A Cache-Aware Parallel Implementation of the Push-Relabel Network
Flow Algorithm and Experimental Evaluation of the Gap Relabeling
Heuristic

David A. Bader*
College of Computing
Georgia Institute of Technology
Atlanta, GA 30332

Abstract

The maximum flow problem is a combinatorial prob-
lem of significant importancein awide variety of research
and commercial applications. It has been extensively stud-
ied and implemented over the past 40 years. The push-
relabel method has been shown to be superior to other
methods, both in theoretical bounds and in experimental
implementations. Our study discusses the implementa
tion of the push-relabel network flow algorithm on present-
day symmetric multiprocessors (SMP's) with large shared
memories. The maximum flow problem is an irregular
graph problem and requires frequent fine-grained locking
of edgesand vertices. Over adecade ago, Anderson and Se-
tubal implemented Goldberg's push-relabel agorithm for
shared memory parallel computers; however, modern sys-
tems differ significantly from those targeted by their im-
plementation in that SMP's today have deep memory hier-
archiesand different performance costsfor synchronization
and fine-grainedlocking. Besides our new cache-awareim-
plementation of Goldberg's paralel algorithm for modern
shared-memory parallel computers, our main new contri-
bution is the first parallel implementation and analysis of
the gap relabeling heuristic that runs from 2.1 to 4.3 times
faster for sparse graphs.

1 Introduction

A flow network is a directed graph G = (V, E) with
[V| = n vertices and |E| = m edges and with two distin-
guished vertices, the source vertex s and the sink vertex
t. Each edge has a positive real-valued capacity function
¢, and thereis aflow function f defined over every vertex
pair. The flow function must satisfy three constraints:

*This work was supported in part by NSF Grants CAREER ACI-
00-93039, NSF DBI-0420513, ITR ACI-00-81404, DEB-99-10123, ITR
EIA-01-21377, Biocomplexity DEB-01-20709, and ITR EF/BIO 03-
31654; and DARPA Contract NBCH30390004.

Vipin Sachdeva

Electrical and Computer Engineering Department

University of New Mexico
Albuquerque, NM 87106

e f(u,v) <c(u,v) for dl u,vinV xV (Capacity con-
straint)

e f(u,v)=—"F(vu)foraluvinV xV (Skew symme-
try)

e Yov f(uv)=0foradluinV —{st} (Flow conser-
vation)

The flow of the network is the net flow entering
the sink vertex t (which is equal to the net flow leav-
ing the source vertex s). In mathematical terms, |f| =
Suev F(ut) = Xyey f(s,v). The maximum flow prob-
lem (MAX-FLOW) is to determine the maximum possible
value for |f| and the corresponding flow values for each
vertex pair in the graph.

The maximum flow problem is not only an impor-
tant theoretical graph algorithm, but has important prac-
tical applications in resource-allocation in networks and
a variety of scheduling problems. Also, a surprising va
riety of linear programming problems in practice can be
modeled as network flow problems. In such cases, special
purpose network flow algorithms can solve such problems
much faster than conventional linear programming meth-
ods. Also several of the graph problems such as bipar-
tite matching, shortest path, and edge/vertex connectivity,
can aso be modeled as network flow problems [1, 23].
A large variety of sequential algorithms exist for MAX-
FLOW. The sequential agorithms are typically grouped
into two classes.

Augmenting Path Algorithms: maintain mass balance
constraints at each vertex (other than s or t) and in-
crementally augment flow along pathsfrom stot;

Preflow Push-Push Algorithms: flood the network as a
first step, and incrementally relieve flow from ver-
tices with excesses by sending flow forward towards
t or backward towards s based on the capacity of each
edge.



Ford and Fulkerson [9] proposed the first maximum-flow
algorithm, using the concept of augmenting paths (an aug-
menting path is a path from sto t that can be used to in-
crease theflow from stot becauseit is not being optimally
used) and sending flows across these paths. Edmonds and
Karp [8] improved upon the algorithm by sending flows
across the shortest augmenting paths. They showed that
using a breadth-first search in the labeling algorithm and
selecting the shortest augmenting path always alows the
algorithm to terminate in at most O (nn?). Dinic’s algo-
rithm [7] finds all the shortest augmenting pathsin asingle
step, using “layered networks.” Layers are determined by
the present flow, and built on a breadth-first search using
only useful arcs (e= (u,v) st. fe < Ce Or €= (V,U) St.
fe > 0). (Note that throughout this paper for e = (u,v) we
use the shorthand notation Fe to represent F(u,v) for func-
tion F.) A phase consists of finding a layered network,
then finding a maximum flow on the layered network and
improving the original flow. The number of phasesis at
most n— 1, and the algorithm runs in O (n?m). Karzanov
[19] introduced the concept of preflows and the push op-
eration and gave an O(n®) algorithm. Goldberg and Tar-
jan designed the push-relabel algorithm [13] with the time-

bound of O(nmlog ”—;) In 1993, computational experi-

ments confirmed that Goldberg's algorithm was the fastest
algorithm in practice [2]. In a later paper by Goldberg
and Cherkassky [5], several implementations of the push-
relabel were studied and their results analyzed on a variety
of graphs. We will discuss this algorithm in detail in Sec-
tion 2, as our paralel implementation is based upon this
sequential approach. Goldberg's survey paper [12] gives
an excellent review of the algorithmic developmentsfor the
network-flow algorithm for the past forty years, including
recent efforts.

Severa researchers have given theoretic parallel algo-
rithms for MAX-FLOW using the PRAM moded [10, 15].
Goldberg and Tarjan [13] proposed an implementation of
their push-relabel algorithm which takes O (n?logn) on an
EREW PRAM with O(n) processors. Details of Goldberg's
parallel implementation using parallel prefix-sumsis given
in[11]. The MAX-FLOW problem restricted to planar di-
rected graphs can be solved in O (log®n) time using O(n*)
processorsor in O(log?n) time using O(n®) processors on
a CREW PRAM [16]. A more recent result for the MAX-
FLOW problem on graphs with integer capacitiesis given
by Sibeyn [21]. His solution finds the maximum flow in
O((logC +log*n) logn/log(m/n)) using O(n?) proces-
sorsonaCREW PRAM whereC isthe average edge capac-
ity. Shiloach and Vishkin [20] give aparallel MAX-FLOW
algorithm which runsin O (n?logn) using O(n) processors
on CRCW PRAM. There exists a randomized parallel a-
gorithm to construct a maximum flow in a directed graph
whose edge weights are given in unary, such that the num-
ber of processors is bounded by a polynomia in the num-

ber of vertices, and its time complexity is O (log“nlogC)
for some constant k, where C is the largest capacity of any
edge[18]. While several researchers have proposed PRAM
agorithmsfor the maximal flow problem, practical paralel
implementations of any of these algorithms are rare. An-
derson and Setubal [3] gave the first practical parallel im-
plementation of the push-relabel algorithm for a uniform
shared-memory address space. Their parallel implementa-
tion used only the global relabeling heuristic (described in
Section 2) and demonstrated good speedups on the Sequent
Symmetry over a sequential implementation for the fami-
lies of graphs that were tested.

Our target architecture is a symmetric multi processor
(SMP). Most of the new high-performance computers are
clusters of SMPs having from 2 to over 100 processors per
node. In SMPs, processors operate in a true, hardware-
based, shared-memory environment. SMP computersbring
us much closer to PRAM, yet it is by no means the PRAM
used in theoretical work—synchronization cannot be taken
for granted, memory bandwidth is limited, and good per-
formance requires a high degree of locality. Designing and
implementing parallel algorithms for SMPs requires spe-
cial considerations that are crucia to a fast and efficient
implementation. For example, memory bandwidth often
limits the scalability and locality must be exploited to make
good use of cache.

Our major innovations discussed in this paper are

e a cache-aware optimization of Anderson and Se-
tubal’s approach, and

e the first design, implementation, and analysis, of
a new shared-memory parallel algorithm for the
gap relabeling heuristic that has been shown toim-
prove performance.

The organization of the rest of this paper is as fol-
lows. In Section 2 we review Goldberg and Tarjan’s se-
guential push-relabel method for MAX-FLOW, including
the global and gap relabeling heuristics. Section 3 de-
scribes Anderson and Setubal’s parallel implementation of
push-relabel that uses only the global relabeling heuristic.
Our new high-performance and cache-aware paralel im-
plementation using both global and gap relabeling is pre-
sented in Section 4. In Section 5 we perform experimental
studies and analyze the performance using our parallel gap
relabeling heuristic.

2 ThePush-Relabel Algorithm

Inthissection, we detail the push-relabel a gorithm by
Goldberg and Tarjan [13]. The motivation behind the push-
relabel agorithm is to push alarge amount of flow from s
to any internal vertex v in a single operation rather than
augmenting the flow from the source in a time-consuming



operation in some cases. Thisinitia flow might be passed
fromtheinternal vertex to the sink, if there exists sufficient
capacity, or might be passed back to the source if it isin
excess of the capacity of the network from v to the sink.
Thisintroducesthe concept of preflow that relaxes the con-
straints discussed previously in which the net flow to any
internal vertex, i.e. the difference between the incoming
and the outgoing flows, is allowed to be non-negative dur-
ing the running of the algorithm as opposed to be strictly
zero. When the constraints are again satisfied for al the
vertices of agraph, preflow becomes the maximum-flow of
the graph.

All of the vertices v € V for which net flow is non-
zero are active vertices. Admissible edges are edges (u, v)
for which flow can be further increased without violating
the maximum capacity, i.e. for which c(u,v) — f(u,v) =
us(v,w) > 0. In Alg. 1 we first define a push and relabel
operation after which we detail the algorithm.

2.1 Heuristics of Push-Relabel

A number of computational studies have focused on
the push-relabel agorithm [6, 2]. The push-relabel algo-
rithm is slow in practice, and relies upon two major heuris-
tics (Global Relabel and Gap Relabel) to improve its per-
formance. Thefollowing definitions are needed. Theresid-
ual capacity of an edge (u,v) isr(u,v) = c(u,v) — f(u,v).
The edges with r(u,v) > 0 are residual edges E+ which
induce the residual graph G¢ = (V,E¢). An edge with
r(u,v) = 0issaturated.

Global Relabeling heuristic: The distance labels (d(v)
for v € V) in the push-relabel represent alower bound
on the distances from any vertex to the sink. Thesela
bels help the algorithm to push flow towards the sink,
as the push operation is always carried from a vertex
with a higher label connected to another with a lower
label. Global relabeling updates the distance labels on
the vertices as the shortest distance from the vertex v
to the sink t along the residua graph Gt = (V,Ex).
This can be performed by a breadth-first search to the
sink, the cost of which is O(n+m). Such a relabel-
ing is performed periodically after a number of push-
relabel steps to amortize the expensive computational
cost of the heuristic.

Gap Relabeling heuristic: updates the labels of the ver-
tices which are unreachable from the sink to the label
of the source which is |V | = n. Such a situation arises
if there are no vertices with labels ¢ but vertices with
distance labels d(v) such that 6 < d(v) < n. Thedis-
tance labels of such vertices can be updated then to n.
Such an update makesit possible to remove these ver-
tices from consideration for pushing flow to the sink
at once.

push(v, w)

Requirement: v is active and (v,w) is admissi-
ble.

Action: send & = (0,min(ef (v),us (v,w)) units
of flow from v tow.

relabel (v)
Requirement: v is active and push(v,w) does
not apply for any w.

Action: replace d(v) by min<VW>e dw)+1

Et

Data :(1) A directed graph G = (V,E)
of V| =n and |[E|] = m with two
distinguished
vertices source sand sink t
(2) Each vertex v € V hasan adjacency
list A(v)
which has al outgoing edges outgoing
fromv
(3) Each edge e = (u,v) € E has a
capacity of c(u,v)
which is the maximum flow which
can be passed through the edge

Result : The maximum flow f(s,t) which can
be routed through the graph i.e. from
the source stothesink t.
begin
(1) Set the source label d(s) = n, the sink
label to d(t) = 0, and the labels on the
remaining verticestod(v) =0foralveV —
{st}.
(2) Saturate al edgesin the adjacency list of
the source si.e. e € A(s) placing
excess flow on all the vertices connected to
the sourcei.e. all wsuch that (v,w) € A(S).
(3) Calculatetheresidual edgesi.e. all ec E
such that ce — fe > 0.
while (active vertices) do
(3.1) Perform the Relabel operation on
the active vertices.
(3.2) Perform the Push operation on the
admissible edges.

end

Algorithm 1. Goldberg’'s Push-Relabel Algorithm
for Maximum Flow




Goldberg and Cherkassky [5] implemented the push-
relabel algorithm, and studied the running times based on
operation orderings and distance update heuristics on ava
riety of graph families. They concluded that both the global
relabeling as well as gap relabeling heuristics give the best
performance. They also affirmed that the processing of ver-
tices should be carried out preferably in highest-1abel order,
as compared to first-in, first-out (FIFO) order. Goldberg
[11] showed that the worst-case running time of FIFO or-
der is O(n3), compared with O(n?,/m) for highest-label
order. Also, the implementation of highest-label dramat-
ically reduces the work necessary for finding gaps; hence
even if the gaps are not found in some cases, the overhead
is sizably small and can still achieve close to optimal per-
formance[5].

3 Parallel Implementation of Push-Relabel

In this section, we focus on the paralel implemen-
tation by Anderson and Setubal [3]. We chose their im-
plementation as, to our knowledge, it is the only practi-
cal push-relabel algorithm that has demonstrated a good
speedup on shared-memory architectures. To achieve this
performance, Anderson and Setubal optimized the concur-
rent global relabeling implementation. They reaized in
a shared-memory machine with a low number of proces-
sors, synchronous implementation of globa or gap rela
beling heuristics will offset any advantage in incorporat-
ing such a step in the parallel implementation. Goldberg's
valid relabeling requiresthat d(v) < d(w)+ 1 for all edges
(v,w) € E¢. Due to multiple processors working on possi-
bly overlapping data, invalid relabelings might occur which
could push the flow towards the source s causing incorrect
results. Hence for simultaneous periodic global relabeling,
they introduced the concept of waves. Each vertex of the
graph, in addition to its label d(v), is now assigned a wave
number wave(v). The wave number denotes the number
of times the vertex has been globally relabeled. Alg. 2 de-
tail s the augmented definitions of push and the global rela-
bel operation required for concurrent global relabeling [3].
CurrentWave and CurrentLevel are the current wave num-
ber and the current level in the BFS tree, respectively.

Global relabeling is performed periodicaly, i.e. after
2n discharge operationsare carried out by all the processors
in total. Each processor has two local queues. an in-queue
and an out-queue. A processor works on its in-queue in
a FIFO order, until it runs out of work, in which case it
gets vertices from the shared queue. Newly active vertices
which are created during the discharge operation are placed
in the out-queue of a processor until it getsfull; after which
the processor places al the activated vertices in the out-
gueue of the shared queue. The number of vertices trans-
ferred between the shared-queue and the in- or out-queues
is varied during the program execution for dynamic gran-

Push; (v, w)

Requirement: Processor i holds the locks for
both vand w, (v,w) € E¢,d(v) = d(w) + 1, and
wave(v) = wave(w).

Action: Push as much flow to w as (v,w)
affords, and update v's and w's excesses.

Global Relabel;(v)
Requirement: Processor i holdsthelocksfor v,
wave(v) < Current\ave.
Action: if d(v) < CurrentLevel then
1.1d(v) < CurrentLevel;
1.2 wave(v) « Current\ave;

Algorithm 2: Anderson-Setubal definitions for Push
and Global Relabel

ularity control through heuristics. Processors use locks for
any access of the shared queue (i.e.,, for transferring ver-
ticesin or out of the shared queue).

4 Our New High-Performance | mplementa-
tion

Anderson and Setubal conducted their studies on the
Sequent Symmetry, a shared-memory parallel machine
circa 1987, no longer in production, and based on 16 MHz
Intel 80386 processors. Superscalar processors capable of
running two orders of magnitude faster are now widely per-
vasive in present day SMP's. The rate of improvement
in microprocessor speed has been exponential and has ex-
ceeded the rate of improvement in DRAM speed. Hence,
algorithm designers are faced with an increasing processor-
memory performance gap, often referred to as the mem-
ory wall, a primary obstacle for attaining improved per-
formance of computer systems. Cache-aware algorithm
design is emerging as a possible technique for addressing
thisissue. Our initia port of Setubal’s implementation for
modern shared-memory computers scaled linearly in rela-
tive speedup with the number of processors on one fam-
ily of graphs (acyclic dense graphs, described later), and
nearly linearly on other families of graphs. However, the
performance lacked absolute speedup compared with an
optimized sequential implementation such as Goldberg's
hipr (available from http://www.avglab.com/andrew/
soft.html). For instance, our paralel code, running
on eight processors, barely achieved the performance of
the sequential implementation. Profiling the execution re-
veded ahigh rate of cache misses due to irregular memory
access patterns, hindering performance.




4.1 Cache-Aware Implementation

In the push-relabel method, each directed edge e =
(v,w) € E is converted into two edges in opposite direc-
tions, e = (v,w) and e; = (w,v). Edge e; appearsin the
adjacency list of v and has a capacity of the original edgee;
edge e> appearsin the adjacency list of w and has a capac-
ity of 0, denoting that there cannot be flow aong edge e».
We refer to e; asthe mate edge of e; and vice-versain later
sections. The antisymmetry constraint by Sleator [22] then
specifies that the flow in e; should aways be the opposite
of the flow in e>. Thus, during the execution of the code,
any increase in the flow of e; must be met by a decreasein
theflow of ;. Such an accessisalso required for the global
relabeling step since it has to read the mate edge’s flow for
avalid global relabeling. In this case, the mate edge’s flow
isjust read and not updated contrary to the push operation.

For each edge we save its maximum flow and current
flow information and its mate's information. This reduces
the number of memory accesses when the mate edge’s in-
formation isjust read and not updated. For updates though,
an effective solution is the contiguous alocation of mem-
ory used for the mated pair of edges. This ensures spa-
tial locality so that a cache line or pair of adjacent lines
holds the mated edge pair's portion of the data structure
during the updating. When this cache-aware code was
now tested for the families of graphs, it was found to give
an excellent relative speedup for each family of graphs.
However, the absolute speedups, compared to the opti-
mized sequential implementation by Goldberg using push-
relabel method with highest-label order vertices process-
ing and gap and global relabeling heuristics, were not con-
sistently improved. For dense graphs with 1,000 or more
vertices, our cache-aware parallel implementation demon-
strated good absol ute speedupsrel ative to Goldberg's code.
However, the absolute speedup was poor on random level
graphs. We discuss these issues and improvements to our
parallel implementation in the next section.

4.2 Highest-Label Ordering of Vertices

Our cache-aware implementation, while improving
the performance on dense graphs, lacked absol ute speedup
improvements on other families of graphs. The parallel
code performed an order of magnitude more push and re-
label operations than the sequential code. Due to the in-
herent cost of locking used in every push-relabel operation
in the parallel code, this led to a significant performance
degradation of the parallel code. There are two noteworthy
differences between the sequential code (Goldberg's hipr)
and our cache-aware parallel implementation.

e The sequential code processes the verticesin highest-
label order (vertices with highest label are processed
first) compared to paralel code which was processing
the vertices in approximate FIFO order.

e Thesequentia code uses both the gap and global rela-
beling heuristics compared to the parallel code which
lacked the gap relabeling heuristic.

Goldberg asserted that with FIFO order processing of ver-
tices, the gap relabeling heuristic did not give further im-
provements. However, with highest-label processing order,
the gap relabeling gives significant improvements. Thus
for optimized performance, we needed to design and im-
plement the following two modifications together:

e The processing of vertices must occur in highest-label
rather than FIFO order.

e Gap relabeling must occur asynchronoudly; i.e., car-
ried out concurrently with the push/relabel operations
performed on the active vertices.

Next we detail our new approach for highest label process-
ing inthe parallel implementation; and defer the design and
implementation of concurrent gap relabeling to the next
subsection.

The prior implementation [ 3] uses a shared queue and
a queue local to each processor for active vertices. Each
local queue is further divided into a local in-queue and a
local out-queue. The processor discharges or relabels ver-
tices from its local in-queue and places the new active ver-
tices into the local out-queue. When the local out-queueis
full, it is emptied into the global shared queue. This struc-
ture is primarily maintained for load-balancing and work-
stealing. Transfer of vertices between the local and the
global queuesis carried out in batches, for instance of size
b each. This parameter b is varied during the course of the
run for improved results: Anderson and Setubal gave dif-
ferent rules for increasing or decreasing the parameter b to
prevent too much oscillation. We retain the queue structure
and the load-balancing rules for transferring vertices. To
implement highest-label ordering, we modify the structure
of the local in-queue and the global queue, while retain-
ing the concept of transfer of vertices between the shared
gueue and the local in- and out-queues. We divide the lo-
cal in-queue into buckets, each of which holdsverticeswith
the same label. The number of buckets is thus equal to the
number of possible labels of vertices (0 to n—1). When
a vertex is moved into the in-queue of a processor, it is
placed in the appropriate bucket which holds al the ver-
tices of the same label. The global queue is similarly di-
vided into buckets, and any transfer between a local and
globa queue is thus emptying of buckets with the bucket
of the highest label emptied first. Thus, when a processor
attempts to transfer vertices from either the globa queue
or the local out-queue into the in-queue, the active vertices
are copied starting from the highest label of the non-empty
bucket. The highest label of the local in-queue and the
globa queue is suitably atered in case of such transfers:
the highest label of the in-queue mostly increases while the



highest label of the global queue decreases as the buckets
with the highest labels are emptied.

To optimize this implementation, several parameters
are added to each local queue: number of vertices of each
label or vertices present in a bucket b;, total number of ver-
tices each processor holdsin its local in-queueor in all its
buckets, and the highest label held by any processor in its
local in-queue. We added this | ast parameter as we discov-
ered that frequently the highest 1abel held by any processor
was much less than the maximum label n which could la-
bel any vertex in the graph. An issue of synchronization
remains in that a processor running the global relabeling
heuristic may update the labels of the verticesthat are held
in another processor’s local in-queue. This occurs because
there is a separate queue for the global relabeling, with
processors gaining control of the queue at different inter-
vals, and leads to vertices being held in a bucket with an
updated label. We solved thisissue by adding aflag to each
vertex. When a processor changes the labels of a vertex in
the global relabeling step, it sets the flag of the vertex de-
noting that the vertex has been worked upon. A processor
then checks the flag of a vertex before it transfers the ver-
tices from the local in-queue to the out-queue or the global
gueue: if the flag is set, it then moves the vertex into the
correct bucket while transferring to the global queue. The
transfer of vertices starting with the highest-label bucket
ensures that the processing of the verticesis approximately
highest label.

4.3 Concurrent Gap Relabeling

For improved performance, we use the gap relabeling
heuristic in conjunction with the highest-label processing
described in the previous section. For gap relabeling, we
require additional bookkeeping such as the counts of the
number of vertices with each particular label. Thus, when
a processor changes the label of a vertex, it also updates
the counts of the previous and new labels. Thisleadsto a
slight overhead: for updating the label, the processor was
locking the vertex, but now also has to lock the previous
label and the new label as well. We maintain a shared data
structure comprised of a Boolean flag and a label whichis
initialized to n. For the gap relabeling heuristic, if the count
of vertices of any label reaches zero dueto relabeling, local
or global, it is identified as a gap G,. Therefore, vertices
with labels greater than the label of the gap discovered pre-
viously are updated to n and are identified as gap-active.
Once the gap is discovered, the processor then proceeds
with the locking of the data structure, sets the Boolean flag,
and updates the shared label to the label of the gap discov-
ered G;. We now introduce the updated relabel operation:
the flag and the label are first read before relabeling, and if
the flag is not set, the processors continue with the normal
relabel operation. If however the flag is set, the processor
checks the label of the vertex which it is to relabel, and if

the label is greater than the label of the gap, the new la
bel is n. Other processors may also discover other gaps;
however, these gaps will only help in faster running of the
implementation if a newly discovered gap has alower |abel
than the previous gap. Hence, the gap label is updated only
if the newly discovered gap is lower than the previous gap
label. The gap relabeling heuristic presented here is thus
performed concurrently, without explicit synchronization.
In Alg. 3 we give the algorithms for the updated and the
newly introduced operations for gap relabeling.

gap.active(lq)

Requirement: Count|l;] is0and gapFlagisnot
Set.

Action: Set the gapFlag, and update gapLabel
toly.

gap_update(l2)

Requirement: Count[lz] is 0, gapFlag is set,
and gapLabel |, < |1

Action: update gapLabel to 5.

relabel _nogap(v)

Requirement: v is active, gapFlag is not set,
and push(v,w) does not apply for any w.
Action: replaced(v) by mi”(v,w)eEf dw)+1
relabel_gap(v)

Requirement: v is active, gapFlag is set, and
push(v,w) does not apply for any w and d(v) >
gapLabel.

Action: replaced(v) by n

Algorithm 3: Updated and newly introduced opera-
tions for gap relabeling.

5 Experimental Results

We tested our shared-memory implementation on
the Sun E4500, a uniform-memory-access (UMA) shared
memory parallel machinewith 14 UltraSPARC || 400MHz
processors and 14 GB of memory. Each processor has 16
Kbytes of direct-mapped data (L 1) cache and 4 Mbytes of
external (L2) cache. We implement the algorithms using
POSIX threads and software-based barriers[4].

We use three families of graphs (taken from the 18t
DIMACS Implementation Challenge [17]) for the experi-
mental results:

Random Level Graphs. These graphs are rectangular
gridsof vertices, where every vertex in arow hasthree
edges to randomly chosen vertices in the following
row. The source and the sink are external to the grid,




the source has edgesto all verticesin the top row, and
all verticesin the bottom row have edges to the sink.

RMF graphs. These graphs, described by Goldfarb and
Grigoriadis [14], are comprised of |1 square grids
of vertices (frames) having |1 x |2 vertices, and con-
nected to each other in sequence. They can be gen-
erated by the RMFGEN generator by Goldfarb. The
source vertex is in a corner of the first frame, and the
sink vertex isin acorner of thelast frame. Each vertex
is connected to its grid neighborswithin the frame and
to one vertex randomly chosen from the next frame.

Acyclic Dense Graphs: These are complete directed
acyclic dense graphs: each vertex is connected to
every other vertex, the source and the sink included.

In Fig. 1 we plot the running times with increasing
number of processors for instances of the three separate
families. The graphs draw a comparison between the FIFO
implementation with no gap relabeling, the FIFO imple-
mentation with gap relabeling, and our new highest-1abel
processing with concurrent gap relabeling heuristic. In
our experiments with FIFO-processing order, using gap re-
labeling has negligible effect on the performance, as ex-
pected. For acyclic dense graphs, the execution time differ-
ence between the FIFO implementations and the highest-
label implementation with gap relabeling is negligible, and
we expect this for the following reason. Since each vertex
is connected to all other vertices, very few gaps (if any) are
discovered, and the gap relabeling heuristic is not very ef-
fective in this case. We do observe a decrease in speedup
with increasing number of processors, a problem due to
smaller input sizes of graphs. On the other hand, we found
significant improvement for random level graphs and the
RMF graphs with the gap relabeling heuristic used in con-
junction with the highest-label processing. In these cases
of sparse graphs, the improvements ranged from 2.1 to 4.3
times faster than the FIFO implementations.

Acknowledgments

We wish to thank Jodo Setubal for his parallel imple-
mentation of Goldberg’s push-relabel maximum flow algo-
rithm. Emeline Picart, while visiting University of New
Mexico, ported Setubal’s code from the Sequent Symmet-
ric to modern Symmetric Multiprocessors. The porting was
a non-trivial task as Emeline had to fix newly introduced
race conditions caused by the significant differences be-
tween the shared memory models.

Acylic Dense Graphs(2000 nodes)

—@— FIFO processing with no gap relabeling
—A— FIFO processing with gap relabelling
—v— Highest Label Processing with gap relabeling

Running Time(s)

Number of Processors
RLG Graphs(131074 nodes)

—@— FIFO processing with no gap relabeling
—A— FIFO processing with gap relabeliing
—¥— Highest Label processing with gap relabeling

Running Time(s)

0 2 4 6 8 10
Number of Processors
RMF Graphs(262144 nodes)

—@— FIFO processing with no gap relabeling
8 —A— FIFO processing with gap relabeling
—¥— Highest Label processing with gap relabeling

Running Time(s)

T T
0 2 4 6 8 10

Number of Processors

Figure 1: Performance of the Parallel Maximum Flow Im-
plementations for Acyclic Dense Graphs (top), Random
Level Graphs (middle), and RMF Graphs (bottom). We
compare the performance of our cache-aware optimized
implementations of FIFO processing with and without gap
relabeling to our new optimized version with highest-label
processing and the concurrent gap relabeling heuristic.



References

(1]

(2]

(3]

[4]

(5]

(6]

(8]

[9]

[10]

[11]

[12]

R.K. Ahuja, T.L. Magnanti, and J.B. Orlin, editors.
Network Flows: Theory, Algorithms and Applica-
tions. Prentice Hall, Englewood Cliffs, NJ, 1993.

R.J. Anderson and J. C. Setubal. Goldberg’s algo-
rithm for the maximum flow in perspective: A com-
putational study. In Network Flows and Matching:
First DIMACS Implementation Challenge, pages 1—
18, 1993.

R.J. Anderson and J.C. Setubal. Ontheparallel imple-
mentation of Goldberg’smaximum flow algorithm. In
Proc. 4th Ann. Symp. Parallel Algorithms and Archi-
tectures (SPAA-92), pages 168177, San Diego, CA,
July 1992,

D. A. Bader and J. JaJa. SIMPLE: A methodology for
programming high performance agorithms on clus-
ters of symmetric multiprocessors (SMPs). Journal of
Parallel and Distributed Computing, 58(1):92—-108,
1999.

B.V. Cherkassky and A.V. Goldberg. On implement-
ing the push-relabel method for the maximum flow
problem. Algorithmica, 19:390-410, 1997.

B.V. Cherkassky, A.V. Goldberg, P. Martin, J.C. Se-
tubal, and J. Stolfi. Augment or push: a com-
putational study of bipartite matching and unit-
capacity flow algorithms. ACM J. Experimental Al-
gorithmics, 3(8), 1998. www.jea.acm.org/1998/
CherkasskyAugment/.

E.A. Dinic. Algorithm for solution of maximum flow
in networks with power estimation. Soviet Math.
Dokl., 11:1277-1280, 1970.

J. Edmonds and R. M. Karp. Theoretical improve-
ments in algorithmic efficiency for network flow
problems. Journal of the ACM, 19(2):248-264, 1972.

L.R. Ford, Jr. and D.R. Fulkerson, editors. Flowsin
Networks. Princeton Univ. Press, NJ, 1962.

S. Fortune and J. Wyllie. Parallelism in random ac-
cess machines. In Proc. 10th Ann. Symp. of Theory of
Computing (STOC), pages 114-118, San Diego, CA,
May 1978. ACM.

A.V. Goldberg. Efficient graph algorithmsfor sequen-
tial and parallel computers. PhD thesis, MIT, Cam-
bridge, MA, January 1987.

A.V. Goldberg. Recent developments in maximum
flow algorithms. In 6th Scandinavian Workshop on
Algorithm Theory (SWAT), pages 1-10, Stockholm,
Sweden, July 1998.

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

A.V. Goldberg and R.E. Tarjan. A new approach
to the maximal flow problem. Journal of the ACM,
35:921-940, 1988.

D. Goldfarb and M.D. Grigoriadis. A computational
comparison of the Dinic and network simplex meth-
ods for maximum flow. Annals of Oper. Res., 13:83—
123, 1988.

J. JAJa.  An Introduction to Parallel Algorithms.
Addison-Wesley Publishing Company, New York,
1992.

D.B. Johnson. Parallel algorithms for minimum cuts
and maximum flows in planar networks. Journal of
the ACM, 34(4):950-967, 1987.

D.S. Johnson and C.C. McGeoch, editors. Network
Flows and Matching: First DIMACS Implementa-
tion Challenge, volume 12 of DIMACS Seriesin Dis-
crete Mathematics and Theoretical Computer Sci-
ence. American Mathematical Society, 1993.

R.M. Karp, E. Upfal, and A. Wigderson. Constructing
aperfect matching isin random NC. Combinatorica,
6(1):35-48, 1986.

A. V. Karzanov. Determining the maximal flow in
a network by the method of preflows. Soviet Math.
Dokl., 15:434-437, 1974.

Y. Shiloach and U. Vishkin. An O(n?logn) paral-
lel MAX-FLOW algorithm. J. Algs., 3(2):128-146,
1982.

J. Sibeyn. Better trade-offs for paralel list ranking.
In Proc. 9th Ann. Symp. Parallel Algorithms and Ar-
chitectures (SPAA-97), pages 221-230, Newport, RI,
June 1997. ACM.

D. D.K. Sleator. An O(nmlogn) agorithm for maxi-
mum network flow. Technical Report STAN-CS-80-
831, Computer Science Department, Stanford Univer-
sity, 1980.

K. Steiglitz and C. H. Papadimitriou. Combinatorial
Optimization : Algorithms and Complexity. Prentice
Hall, Englewood Cliffs, NJ, 1982.



