
High-Performance Algorithm Engineering for
Large-Scale Graph Problems and Computational

Biology

David A. Bader�

Electrical and Computer Engineering Department,
University of New Mexico, Albuquerque, NM 87131

dbader@ece.unm.edu

Abstract. Many large-scale optimization problems rely on graph the-
oretic solutions; yet high-performance computing has traditionally fo-
cused on regular applications with high degrees of locality. We describe
our novel methodology for designing and implementing irregular paral-
lel algorithms that attain significant performance on high-end computer
systems. Our results for several fundamental graph theory problems are
the first ever to achieve parallel speedups. Specifically, we have demon-
strated for the first time that significant parallel speedups are attainable
for arbitrary instances of a variety of graph problems and are developing
a library of fundamental routines for discrete optimization (especially in
computational biology) on shared-memory systems.

Phylogenies derived from gene order data may prove crucial in an-
swering some fundamental questions in biomolecular evolution. High-
performance algorithm engineering offers a battery of tools that can re-
duce, sometimes spectacularly, the running time of existing approaches.
We discuss one such such application, GRAPPA, that demonstrated over
a billion-fold speedup in running time (on a variety of real and simulated
datasets), by combining low-level algorithmic improvements, cache-aware
programming, careful performance tuning, and massive parallelism. We
show how these techniques are directly applicable to a large variety of
problems in computational biology.

1 Experimental Parallel Algorithms

We discuss our design and implementation of theoretically-efficient parallel algo-
rithms for combinatorial (irregular) problems that deliver significant speedups
on typical configurations of SMPs and SMP clusters and scale gracefully with the
number of processors. Problems in genomics, bioinformatics, and computational
ecology provide the focus for this research. Our source code is freely-available
under the GNU General Public License (GPL) from our web site.

� This work was supported in part by NSF Grants CAREER ACI-00-93039, ITR
ACI-00-81404, ITR EIA-01-21377,Biocomplexity DEB-01-20709, and ITR EF/BIO
03-31654; and DARPA contract NBCH30390004.

S.E. Nikoletseas (Ed.): WEA 2005, LNCS 3503, pp. 16–21, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



High-Performance Algorithm Engineering 17

1.1 Theoretically- and Practically-Efficient Portable Parallel
Algorithms for Irregular Problems

Our research has designed parallel algorithms and produced implementations
for primitives and kernels for important operations such as prefix-sum, pointer-
jumping, symmetry breaking, and list ranking; for combinatorial problems such
as sorting and selection; for parallel graph theoretic algorithms such as spanning
tree, minimum spanning tree, graph decomposition, and tree contraction; and
for computational genomics such as maximum parsimony (see [1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12]). Several of these classic graph theoretic problems are notoriously
challenging to solve in parallel due to the fine-grained global accesses needed
for the sparse and irregular data structures. We have demonstrated theoretically
and practically fast implementations that achieve parallel speedup for the first
time when compared with the best sequential implementation on commercially
available platforms.

2 Combinatorial Algorithms for Computational Biology

In the 50 years since the discovery of the structure of DNA, and with new tech-
niques for sequencing the entire genome of organisms, biology is rapidly moving
towards a data-intensive, computational science. Many of the newly faced chal-
lenges require high-performance computing, either due to the massive-parallelism
required by the problem, or the difficult optimization problems that are often
combinatoric and NP-hard. Unlike the traditional uses of supercomputers for reg-
ular, numerical computing, many problems in biology are irregular in structure,
significantly more challenging to parallelize, and integer-based using abstract
data structures.

Biologists are in search of biomolecular sequence data, for its comparison
with other genomes, and because its structure determines function and leads to
the understanding of biochemical pathways, disease prevention and cure, and
the mechanisms of life itself. Computational biology has been aided by recent
advances in both technology and algorithms; for instance, the ability to sequence
short contiguous strings of DNA and from these reconstruct the whole genome
and the proliferation of high-speed microarray, gene, and protein chips for the
study of gene expression and function determination. These high-throughput
techniques have led to an exponential growth of available genomic data.

Algorithms for solving problems from computational biology often require
parallel processing techniques due to the data- and compute-intensive nature of
the computations. Many problems use polynomial time algorithms (e.g., all-to-
all comparisons) but have long running times due to the large number of items
in the input; for example, the assembly of an entire genome or the all-to-all
comparison of gene sequence data. Other problems are compute-intensive due to
their inherent algorithmic complexity, such as protein folding and reconstructing
evolutionary histories from molecular data, that are known to be NP-hard (or
harder) and often require approximations that are also complex.



18 D.A. Bader

3 Phylogeny Reconstruction

A phylogeny is a representation of the evolutionary history of a collection of
organisms or genes (known as taxa). The basic assumption of process necessary
to phylogenetic reconstruction is repeated divergence within species or genes.
A phylogenetic reconstruction is usually depicted as a tree, in which modern
taxa are depicted at the leaves and ancestral taxa occupy internal nodes, with
the edges of the tree denoting evolutionary relationships among the taxa. Re-
constructing phylogenies is a major component of modern research programs in
biology and medicine (as well as linguistics). Naturally, scientists are interested
in phylogenies for the sake of knowledge, but such analyses also have many uses
in applied research and in the commercial arena.

Existing phylogenetic reconstruction techniques suffer from serious problems
of running time (or, when fast, of accuracy). The problem is particularly serious
for large data sets: even though data sets comprised of sequence from a single
gene continue to pose challenges (e.g., some analyses are still running after two
years of computation on medium-sized clusters), using whole-genome data (such
as gene content and gene order) gives rise to even more formidable computational
problems, particularly in data sets with large numbers of genes and highly-
rearranged genomes.

To date, almost every model of speciation and genomic evolution used in phy-
logenetic reconstruction has given rise to NP-hard optimization problems. Three
major classes of methods are in common use. Heuristics (a natural consequence
of the NP-hardness of the problems) run quickly, but may offer no quality guar-
antees and may not even have a well-defined optimization criterion, such as the
popular neighbor-joining heuristic [13]. Optimization based on the criterion of
maximum parsimony (MP) [14] seeks the phylogeny with the least total amount
of change needed to explain modern data. Finally, optimization based on the
criterion of maximum likelihood (ML) [15] seeks the phylogeny that is the most
likely to have given rise to the modern data.

Heuristics are fast and often rival the optimization methods in terms of accu-
racy, at least on datasets of moderate size. Parsimony-based methods may take
exponential time, but, at least for DNA and amino acid data, can often be run to
completion on datasets of moderate size. Methods based on maximum likelihood
are very slow (the point estimation problem alone appears intractable) and thus
restricted to very small instances, and also require many more assumptions than
parsimony-based methods, but appear capable of outperforming the others in
terms of the quality of solutions when these assumptions are met. Both MP-
and ML-based analyses are often run with various heuristics to ensure timely
termination of the computation, with mostly unquantified effects on the quality
of the answers returned.

Thus there is ample scope for the application of high-performance algorithm
engineering in the area. As in all scientific computing areas, biologists want to
study a particular dataset and are willing to spend months and even years in the
process: accurate branch prediction is the main goal. However, since all exact
algorithms scale exponentially (or worse, in the case of ML approaches) with the



High-Performance Algorithm Engineering 19

number of taxa, speed remains a crucial parameter—otherwise few datasets of
more than a few dozen taxa could ever be analyzed.

As an illustration, we briefly discuss our experience with a high-performance
software suite, GRAPPA (Genome Rearrangement Analysis through Parsimony
and other Phylogenetic Algorithms) that we developed, GRAPPA extends Sankoff
and Blanchette’s breakpoint phylogeny algorithm [16] into the more biologically-
meaningful inversion phylogeny and provides a highly-optimized code that can
make use of distributed- and shared-memory parallel systems (see [17, 18, 19,
20, 21, 22] for details). In [23] we give the first linear-time algorithm and fast
implementation for computing inversion distance between two signed permuta-
tions. We ran GRAPPA on a 512-processor IBM Linux cluster with Myrinet
and obtained a 512-fold speed-up (linear speedup with respect to the number
of processors): a complete breakpoint analysis (with the more demanding in-
version distance used in lieu of breakpoint distance) for the 13 genomes in the
Campanulaceae data set ran in less than 1.5 hours in an October 2000 run, for
a million-fold speedup over the original implementation. Our latest version fea-
tures significantly improved bounds and new distance correction methods and, on
the same dataset, exhibits a speedup factor of over one billion. We achieved this
speedup through a combination of parallelism and high-performance algorithm
engineering. Although such spectacular speedups will not always be realized, we
suggest that many algorithmic approaches now in use in the biological, phar-
maceutical, and medical communities can benefit tremendously from such an
application of high-performance techniques and platforms.

This example indicates the potential of applying high-performance algorithm
engineering techniques to applications in computational biology, especially in
areas that involve complex optimizations: our reimplementation did not require
new algorithms or entirely new techniques, yet achieved gains that turned an
impractical approach into a usable one.

References

1. Bader, D., Illendula, A., Moret, B.M., Weisse-Bernstein, N.: Using PRAM al-
gorithms on a uniform-memory-access shared-memory architecture. In Brodal,
G., Frigioni, D., Marchetti-Spaccamela, A., eds.: Proc. 5th Int’l Workshop on Al-
gorithm Engineering (WAE 2001). Volume 2141 of Lecture Notes in Computer
Science., Århus, Denmark, Springer-Verlag (2001) 129–144

2. Bader, D., Moret, B., Sanders, P.: Algorithm engineering for parallel computation.
In Fleischer, R., Meineche-Schmidt, E., Moret, B., eds.: Experimental Algorith-
mics. Volume 2547 of Lecture Notes in Computer Science. Springer-Verlag (2002)
1–23

3. Bader, D., Sreshta, S., Weisse-Bernstein, N.: Evaluating arithmetic expressions
using tree contraction: A fast and scalable parallel implementation for symmetric
multiprocessors (SMPs). In Sahni, S., Prasanna, V., Shukla, U., eds.: Proc. 9th
Int’l Conf. on High Performance Computing (HiPC 2002). Volume 2552 of Lecture
Notes in Computer Science., Bangalore, India, Springer-Verlag (2002) 63–75



20 D.A. Bader

4. Bader, D.A., Cong, G.: A fast, parallel spanning tree algorithm for symmetric
multiprocessors (SMPs). In: Proc. Int’l Parallel and Distributed Processing Symp.
(IPDPS 2004), Santa Fe, NM (2004)

5. Bader, D.A., Cong, G.: A fast, parallel spanning tree algorithm for symmetric
multiprocessors (SMPs). Journal of Parallel and Distributed Computing (2004) to
appear.

6. Bader, D.A., Cong, G.: Fast shared-memory algorithms for computing the min-
imum spanning forest of sparse graphs. In: Proc. Int’l Parallel and Distributed
Processing Symp. (IPDPS 2004), Santa Fe, NM (2004)

7. Cong, G., Bader, D.A.: The Euler tour technique and parallel rooted spanning
tree. In: Proc. Int’l Conf. on Parallel Processing (ICPP), Montreal, Canada (2004)
448–457

8. Su, M.F., El-Kady, I., Bader, D.A., Lin, S.Y.: A novel FDTD application featuring
OpenMP-MPI hybrid parallelization. In: Proc. Int’l Conf. on Parallel Processing
(ICPP), Montreal, Canada (2004) 373–379

9. Bader, D., Madduri, K.: A parallel state assignment algorithm for finite state
machines. In: Proc. 11th Int’l Conf. on High Performance Computing (HiPC 2004),
Bangalore, India, Springer-Verlag (2004)

10. Cong, G., Bader, D.: Lock-free parallel algorithms: An experimental study. In:
Proc. 11th Int’l Conf. on High Performance Computing (HiPC 2004), Bangalore,
India, Springer-Verlag (2004)

11. Cong, G., Bader, D.: An experimental study of parallel biconnected components
algorithms on symmetric multiprocessors (SMPs). Technical report, Electrical and
Computer Engineering Department, The University of New Mexico, Albuquerque,
NM (2004) Submitted for publication.

12. Bader, D., Cong, G., Feo, J.: A comparison of the performance of list ranking
and connected components algorithms on SMP and MTA shared-memory sys-
tems. Technical report, Electrical and Computer Engineering Department, The
University of New Mexico, Albuquerque, NM (2004) Submitted for publication.

13. Saitou, N., Nei, M.: The neighbor-joining method: A new method for reconstruction
of phylogenetic trees. Molecular Biological and Evolution 4 (1987) 406–425

14. Farris, J.: The logical basis of phylogenetic analysis. In Platnick, N., Funk, V.,
eds.: Advances in Cladistics. Columbia Univ. Press, New York (1983) 1–36

15. Felsenstein, J.: Evolutionary trees from DNA sequences: a maximum likelihood
approach. J. Mol. Evol. 17 (1981) 368–376

16. Sankoff, D., Blanchette, M.: Multiple genome rearrangement and breakpoint phy-
logeny. Journal of Computational Biology 5 (1998) 555–570

17. Bader, D., Moret, B., Vawter, L.: Industrial applications of high-performance
computing for phylogeny reconstruction. In Siegel, H., ed.: Proc. SPIE Commercial
Applications for High-Performance Computing. Volume 4528., Denver, CO, SPIE
(2001) 159–168

18. Bader, D., Moret, B.M., Warnow, T., Wyman, S., Yan, M.: High-performance al-
gorithm engineering for gene-order phylogenies. In: DIMACS Workshop on Whole
Genome Comparison, Piscataway, NJ, Rutgers University (2001)

19. Moret, B., Bader, D., Warnow, T.: High-performance algorithm engineering for
computational phylogenetics. J. Supercomputing 22 (2002) 99–111 Special issue
on the best papers from ICCS’01.

20. Moret, B., Wyman, S., Bader, D., Warnow, T., Yan, M.: A new implementation and
detailed study of breakpoint analysis. In: Proc. 6th Pacific Symp. Biocomputing
(PSB 2001), Hawaii (2001) 583–594



High-Performance Algorithm Engineering 21

21. Moret, B.M., Bader, D., Warnow, T., Wyman, S., Yan, M.: GRAPPA: a high-
performance computational tool for phylogeny reconstruction from gene-order
data. In: Proc. Botany, Albuquerque, NM (2001)

22. Yan, M.: High Performance Algorithms for Phylogeny Reconstruction with Max-
imum Parsimony. PhD thesis, Electrical and Computer Engineering Department,
University of New Mexico, Albuquerque, NM (2004)

23. Bader, D., Moret, B., Yan, M.: A linear-time algorithm for computing inversion
distance between signed permutations with an experimental study. Journal of
Computational Biology 8 (2001) 483–491


	Experimental Parallel Algorithms
	Theoretically- and Practically-Efficient Portable Parallel Algorithms for Irregular Problems

	Combinatorial Algorithms for Computational Biology
	Phylogeny Reconstruction

