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Abstract. This paper summarizes the design and implementation of a
parallel algorithm for state assignment of large Finite State Machines
(FSMs). High performance CAD tools are necessary to overcome the
computational complexity involved in the optimization of large sequen-
tial circuits. FSMs constitute an important class of logic circuits, and
state assignment is one of the key steps in combinational logic opti-
mization. The SMP-based parallel algorithm – based on the sequential
program JEDI targeting multilevel logic implementation – scales nearly
linearly with the number of processors for FSMs of varying problem sizes
chosen from standard benchmark suites while attaining quality of results
comparable to the best sequential algorithms.

1 Introduction

Parallel architectures have promised high performance computing, but their use
remains largely restricted to well structured numeric applications. Exploiting
parallelism at the level of large distributed memory systems is hindered by
the cost of message passing. However, Symmetric Multiprocessors (SMPs) with
modest shared memory have emerged as an alternative platform for the de-
sign of scientific and engineering applications. SMP clusters are now ubiquitous
for high-performance computer, consisting of clusters of multiprocessors nodes
(e.g., IBM Regatta, Sun Fire, HP AlphaServer, and SGI Origin) interconnected
with high-speed networks (e.g., vendor-supplied, or third party such as Myri-
com, Quadrics, and InfiniBand). Current research has shown that it is possible
to design algorithms for irregular and discrete computations [1–4] that provide
efficient and scalable performance on SMPs.

With the rapid strides in VLSI technology, circuit design and analysis are
becoming increasingly complex. There is a growing need for sophisticated CAD
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tools that can handle large problem sizes and quicken the synthesis, analysis, and
verification steps in VLSI design. CAD applications are inherently unstructured
and non-numerical, making them difficult to parallelize effectively. The state as-
signment problem for Finite State Machines is one such application. It can be
formulated as an optimization problem that is NP-complete. Sequential heuris-
tics that try to solve this task are computationally intensive and fail for large
problem instances. The parallel implementation discussed in the paper, which
is based on the sequential algorithm JEDI [5], overcomes this limitation and
attains better results, i.e., designs with fewer literals (a Boolean variable or its
negation) and hence, faster circuits with reduced size and power consumption,
as well as faster execution times for the design and analysis.

The Finite State Machine (FSM) is a device that allows simple and accurate
design of sequential logic and control functions. Any large sequential circuit can
be represented as an FSM for easier analysis. For example, the control units of
various microprocessor chips can be modeled as FSMs. FSM concepts are also
applied in the areas of pattern recognition, artificial intelligence, language and
behavioral psychology.

An FSM can be optimized for area, performance, power consumption, or
testability. The various steps involved in optimizing an FSM are state mini-
mization, state assignment, logic synthesis, and logic optimization. SIS [6] is a
popular tool for synthesis and optimization of sequential circuits. Many differ-
ent programs and algorithms have been integrated into SIS, allowing the user
a range of choices at each step of the optimization process. The first step of
optimization, state minimization, is performed using STAMINA [7]. Two state
assignment programs, NOVA [8] and JEDI, are distributed with SIS. After state
assignment, the resulting logic for the output can be minimized by the logic
minimizer ESPRESSO [9] which tries to find a logic representation with the
minimum literals while preserving the functionality of the FSM.

2 Problem Overview

The State assignment problem deals with assignment of unique binary codes to
all of the states of the FSM so that the resulting binary next-state and output
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functions can be implemented efficiently. Most of the algorithms optimize for
the area of logic implementation. The number of literals in the factored form of
logic is the accepted and standard estimate [10] for area requirements of a logic
implementation. The parallel algorithm discussed here minimizes this measure
and thus optimizes for the area.

To illustrate the significance of state assignment, consider the following ex-
ample. The FSM train4 (Fig. 1) consists of four symbolically encoded states st0 ,
st1 , st2 and st3 . These states can be assigned unique states by using a minimum
of two bits, say y1 and y2. The input can be represented by two bits x1 and x2
and the the single bit output by z. y1ns and y2ns represent the next state bits
of y1 and y2, respectively. Suppose the following states are assigned:

st0 ← 00, st1 ← 01, st2 ← 11, st3 ← 10.

The resulting logic equations after multilevel logic optimization would be

y1ns = z(x1y1 + x2y
′
2ns + k) + x′

1x
′
2y2ns

y2ns = y′
1k

′(x1 + x2) + y2(x′
1x

′
2 + k)

z = y′
2(y

′
1 + k)

k = x1x2

This implementation results in a literal count of 22 after logic optimization
and requires 15 gates to realize assuming the complements of inputs are present.
However, if the state assignments were

st0 ← 00, st1 ← 10, st2 ← 01, st3 ← 11,

the logic equations after optimization would be

y1ns = z(y1 + y′
2ns)

y2ns = x1x
′
2 + x′

1x2

z = y1y2y
′
2ns + y′

1y
′
2

The literal count is only 12 in this case and 8 gates are sufficient to implement
the logic. Optimal State assignment becomes computationally complex as well
as crucial for larger FSMs.

2.1 Previous Research

There is significant prior research in the area of state assignment algorithms.
KISS is one of the first algorithms proposed targeting a PLA-based implemen-
tation. NOVA improves on KISS and is based on a graph embedding algorithm.
Genetic algorithms [11] and algorithms based on FSM decomposition [12] are
also proposed.

The sequential logic optimization tool SIS uses algebraic techniques to factor
the logic equations. It minimizes the logic by identifying common subexpressions.
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The algorithms MUSTANG [13] and JEDI use this fact and try to maximize the
size as well as the number of common subexpressions. These algorithms target a
multilevel logic implementation and the number of literals in the combinational
logic network after logic optimization is taken as the measure of the quality of
the solution.

The ProperCAD project [14] aims to develop portable parallel algorithms for
VLSI CAD applications. Parallel algorithms for state assignment [15] based on
MUSTANG and JEDI have also been proposed as part of this project. However,
the speedups in case of shared memory implementations were not significant.
The shared memory algorithm discussed here improves on this work as it attains
better speedups without compromising the quality of results.

3 JEDI

JEDI is a state assignment algorithm targeting a multi-level logic implementa-
tion. The program involves two main stages, the weight assignment stage and
the encoding stage.

Weight Assignment: In this stage, JEDI assigns weights to all possible pairs of
states, which is an estimate of the affinity of the states to each other. It chooses
the best of four heuristics for this purpose: input dominant, output dominant,
coupled, and variation.

The input dominant algorithm assigns higher weights to pairs of present
states, which assert similar outputs and produce similar sets of next states. It
has the effect of maximizing the size of common cubes in the implemented logic
function. The output dominant algorithm assigns higher weights to pairs of next
states, which are generated by similar input combinations and similar sets of
present states. It has the effect of maximizing the number of common cubes
in the logic function. The coupled algorithm adds up the weights generated by
both the input and output dominant algorithms and the variation algorithm
takes into consideration the number of input and output bits also in the weight
computation.

In the input dominant heuristic, an Input State Assignment matrix MI is
computed. This matrix is an Ns ×Ns symmetric matrix with each element mij

corresponding to the weight of the edge (si, sj). In general, mij is defined by
mij =

∑Oi

a=1
∑Oj

b=1 P (oia, ojb) where Oi and Oj are the number of transitions
out of states si and sj of the STG, oia is the set of binary outputs produced by
transition a out of state si, and P (oia, ojb) are the corresponding product terms.

To illustrate these weight assignment algorithms, consider again the example
of the FSM train4 (Fig. 1). It has four states: st0 , st1 , st2 , and st3 . The input
is two bits and the output is a single bit. Let us determine the weight of the
edge (st1 , st2 ).

Firstly, for the states st1 and st2 , the states they fan out to and their corre-
sponding frequency are determined. The FSM, represented in the State Transi-
tion Table (STT) form is input to JEDI. A transition corresponds to an edge in
the State Transition Graph (STG) or a row in the STT.
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st1 → (st1 2, st2 2), st2 → (st2 2, st3 2)

Next, all the outputs produced by these transitions are inspected. In this
case, there is a single output bit and both st1 and st2 produce an output of 1
for all of the transitions. Thus, the value of m12 = m21 = 4 ∗ 4 = 16 in this case.

For the output dominant case, an Output State Assignment matrix is defined
and the weights are calculated similarly.

Encoding Phase – Simulated Annealing: JEDI tries to encode states with
high edge weights closely. This step can be formulated as minimization of the
sum

∑Ns

i=1
∑Ns

j=1 mij ∗ dist(si, sj) where mij is the edge weight from the input
assignment matrix and dist(si, sj) denotes the Hamming distance between two
codes si and sj when they are encoded using the minimum number of bits. The
Hamming distance between two binary codes is the number of bits in which the
codes differ. For example, the codes 1000 and 1110 have a Hamming distance of 2.

Encoding is done using Simulated Annealing, a probabilistic hill climbing
heuristic. The general algorithm is as follows:

1. Start with an initial temperature T and a random configuration of
states.

2. For a given temperature, pick two states at random and assign new
encodings or exchange their encodings.

3. Calculate the change in cost function.
4. Accept the exchange for a decrease in the cost function. Allow some

encodings to be accepted even if it leads to an increase in the cost
function in order to avoid local minima.

5. Repeat steps 2–4 until a certain number of moves are made. Then
lower the temperature and continue with the process.

6. Stop when the temperature reaches the minimum temperature.

After the encoding and simulated annealing is done, the output can be written
in a BLIF (Berkeley Logic Interchangeable Format) file. This file is then passed
into the sequential logic synthesizer, and logic optimization is carried out using
ESPRESSO. The required parameters such as the literal count and final output
logic then can be retrieved for further analysis.

4 Parallel Implementation

We parallelize JEDI using the SMP Node primitives of SIMPLE [16], a method-
ology for developing high performance programs on clusters of SMPs. Both the
weight computation and the encoding stages (the computationally expensive
steps) have been parallelized. Our source code for parallel JEDI is freely-available
from our web site, http://hpc.ece.unm.edu/.

The programming environment for SMPs is based upon the SMP node library
component of SIMPLE, that provides a portable framework for developing SMP
algorithms using the single-program multiple-data (SPMD) programming style.
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This framework is a software layer built from POSIX threads that allows the
user to use either the already developed SMP primitives or the direct thread
primitives. The SMP Node library contains a number of SMP node algorithms for
barrier synchronization, broadcasting the location of a shared buffer, replication
of a data buffer and memory management. In addition to these functions, there
is a parallel do that schedules n independent work statements implicitly to p
processors as evenly as possible.

Weight Computation Stage: The parallel algorithm for weight computation
is detailed in Algorithm 1. To calculate the weight matrix, all of the state pairs
are inspected first. For state i, the edge weights of state pairs (1, i) to (i− 1, i)
are checked. The i − 1 states are distributed among the processors using the
pardo primitive. Thus no two processors get the same edge pair and so there
are no conflicts. Each processor updates the weight matrix independently. Since
it is a shared memory implementation, no merging of local weight matrices is
required.

Result : Weight computation of the states in parallel
compute the weight assignment matrix;
(the inner loop is executed in parallel:)
for i = 1 to Ns do

for j = 1 to i − 1 in parallel do
calculate the edge weight (si, sj);

end
end
synchronize;

Algorithm 1: Weight computation stage after the KISS format file is read into
the appropriate data structure

Encoding Stage – Simulated Annealing: The encoding stage involves as-
signment of unique binary codes to each state such that the literal count of
the combinational logic is minimized. This is done using simulated annealing,
which is a computationally intensive process. A lot of research has been done in
parallelizing it for the placement problem in VLSI CAD applications [17].

Our implementation implements simulated annealing using the divide and
conquer strategy as well as the parallel moves technique. Previous research shows
that these techniques of parallel simulation are well-suited for shared memory
multiprocessors [18].

A unique global configuration is maintained in divide and conquer and paral-
lel moves, which simplifies the implementation for shared memory. The principle
of parallel moves applies multiple moves to a single configuration simultane-
ously. On the other hand, the divide and conquer method lets processors make
simultaneous moves within preset boundaries of the configuration.

We use the same default Initial and Stopping temperatures of JEDI in the
parallel implementation. At higher temperatures, some encodings are accepted
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even if they do not reduce the cost function in order to avoid local minima. But
for low temperature values, the acceptance rate decreases. Hence, the number of
attempted moves increases as the temperature increases. The number of moves
are also varied according to the problem size.

Algorithms 2 and 3 detail the Simulated Annealing strategies.

Result : Simulated Annealing by ‘Divide and Conquer’
(initialization:)
1. Set the initial and stopping temperatures;
2. Set the cooling parameter;
3. Calculate the initial no. of moves per stage;
4. Divide the state space into P partitions;
(annealing in parallel:)
while Current temp > Stopping Temp do

for i = 1 to maxgen do
(maxgen is the max. no. of moves for a temp. value);
compute cost function in the local encoding space;
generate two random codes;
check whether they are already assigned;
if states are assigned then

exchange the codes of the two states;
else

assign new codes to states;
end
calculate the additional cost in the local space;
accept or reject the exchange;
update the local data structure;

end
synchronize;
update the temperature value;
calculate the cost function of the entire state space;

end

Algorithm 2: Simulated Annealing by ‘divide and conquer’

Error and Quality Control: The parallel simulated annealing stage has been
implemented such that there are no conflicts. In the parallel moves method
of annealing, each processor can choose moves independently from the entire
set of available moves. When moves are evaluated in parallel, it is important to
control how the moves are to be accepted. Firstly, it must be ensured that moves
in parallel are not contradictory. For example, two different codes must not be
assigned to the same state in parallel. This case does not arise due to the global
data structure and shared memory configuration.

In case of sequential simulated annealing, the cost function needs to be deter-
mined only once for a particular temperature, and then, only the change in the
cost is evaluated when deciding whether to accept or reject a state. But in par-
allel, the cost is evaluated every time a decision has to be made, since the global
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Result : Simulated Annealing by ‘Parallel moves’
(initialization:)
1. Set the initial and stopping temperatures;
2. Set the cooling parameter;
3. Calculate the initial no. of moves per stage;
(annealing in parallel:)
while Current temp > Stopping Temp do

for i = 1 to maxgen do
(maxgen is the max. no. of moves for a temp. value);
(the maxgen moves are divided among p processors);
compute cost function;
generate two random codes;
check whether they are already assigned;
if codes are assigned then

exchange the codes of the two states;
else

assign new codes to two states;
end
calculate the additional cost;
accept or reject the exchange;
update the data structure;

end
synchronize;
update the temperature value;

end

Algorithm 3: Simulated Annealing by ‘parallel moves’

data structure can be changed by any processor. This is an additional overhead
in the case of the parallel moves implementation. But this does not affect the
quality of the annealing. However, it is possible that there is a repetition of the
same moves by different processors leading to redundant moves.

In case of the divide and conquer strategy, a serious issue needs to be consid-
ered. If the local state space partitions are static, then the number of potential
moves is reduced as the number of processors increase. This would lead to a
degradation of quality, and the algorithm may not even converge. To avoid this,
the states need to be shuffled and distributed in such a manner that it is possible
to realize all possible moves in the global state space. This is ensured by chang-
ing the partitions for a change in temperature so that all the possible moves
are probable. However, the probability that a move is realized decreases when
compared to the sequential algorithm. This leads to a degradation in the quality
for some runs.

To illustrate how the repartitioning is done, consider the following example.
Suppose an FSM has 28 states. The minimum number of bits needed to encode
all states is 5, and this gives a state space of size 32. Consider a four processor
parallel annealing algorithm carried out in this space. Each processor is assigned
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8 codes initially, processor 1 getting codes 0–7, processor 2 getting codes 8–
15, and so on. If no repartitioning is done, then the exchange of states 1 &
8, 2 & 9, etc., is not possible. However, for the next temperature change, if
the partitions are modified such that processor i gets codes 4k + i, for 0 ≤
k < 8, (processor 0 getting 0, 4, 8, 12, . . . , 28, and so on), then all exchanges are
theoretically possible. This partitioning scheme can be be extended for a general
case, an N -bit encoding space and P = 2k processors.

5 Experimental Results

We present an experimental study to compare our parallelized state assignment
algorithm to the state-of-the-art sequential approach, both in terms of quality
and running time. As we will show, our new approach scales nearly linearly with
the number of processors, while maintaining a similar quality of solution. We
compare our parallel JEDI approach with a simplified version of the sequential
algorithm distributed with SIS. These algorithms converge to the same solutions
and preserve most of the features of the original algorithm. The FSMs used for
testing are from the MCNC benchmark suite. After state assignment, the output
in PLA file format is passed through MV-SIS [19], a multilevel multi-value logic
synthesis tool from Berkeley. The quality of the solution is given by the literal
count after multilevel logic optimization. Lower literal count implies less area
of implementation. We use the SMP programming environment previously de-

Fig. 2. Literal Counts for Various Fi-
nite State Machines using Sequential
and Parallel Codes. p = 1 is the parallel
code run on a single processor; p = 2,
4, 8, and 12 is the number of processors
running the parallel code. (Missing bars
indicate that the sequential algorithm
we compared against could not handle
the problem instance)

Fig. 3. Total Execution time (in seconds)
for a suite of Finite State Machines. Note
that this is a log-log plot
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Fig. 4. Performance for the weight computation and simulated annealing steps for two
different Finite State Machines, s298 (top) and scf (bottom)

scribed and discuss next the multiprocessor environment used in this empirical
study.

We test the shared-memory implementation tested on a Sun E4500, a uniform-
memory-access (UMA) shared memory parallel machine with 14 UltraSPARC
II 400MHz processors and 14 GB of memory. Each processor has 16 Kbytes of
direct-mapped data (L1) cache and 4 Mbytes of external (L2) cache.

We measure the quality of the solution by the literal count after multilevel
logic optimization (see Fig. 2) for FSMs of varied problem sizes, when the parallel
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algorithm is run on one processor. (See [20] for corresponding tables.) The count
reported is the best value obtained among the four weight generation heuristics.
The literal count reported by JEDI in [5] and the uniprocessor results obtained
by the parallel implementation ProperJEDI [15] are also listed for comparison.

The quality of the solution for multiprocessor runs is reported in detail in
[20]. Simulated annealing on multiple processors leads to slightly varying results
for successive runs of the same problem, so we report the average literal count
obtained over five test runs. The results listed are the ones obtained from the
parallel moves simulated annealing technique as they give better results than
the divide and conquer technique.

Figure 3 shows the total execution time for different FSMs on multiprocessor
runs. (See [20] for detailed running times.) The reported speedups are good for
all problem sizes (number of states) but are higher for larger problem sizes.
Figure 4 shows the execution time and corresponding speedup for the weight
computation and simulated annealing steps separately for two different FSMs.
It is observed that the execution time for the weight computation phase scales
nearly linearly with the number of processors for all problem sizes.

6 Conclusions

Our new parallel implementation of the popular state assignment algorithm
JEDI has been developed, specifically targeting shared memory multiproces-
sors. The present sequential algorithms fail to give good results for large Finite
State Machines. However with the parallel implementation, significant reduction
in implementation time can be achieved without compromising the quality of the
solution. The algorithm can also be re-structured in order to run on distributed
memory systems. In the gain computation step, the local data structures need
to be merged to generate the weight assignment matrix and in the simulated an-
nealing step, periodic global update of the data structure has to be done to avoid
conflicting state assignments. For future work, better results can be obtained if
parallel logic optimization tools are also developed.
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