
Evaluating Arithmetic Expressions

Using Tree Contraction:
A Fast and Scalable Parallel Implementation

for Symmetric Multiprocessors (SMPs)
(Extended Abstract)

David A. Bader�, Sukanya Sreshta, and Nina R. Weisse-Bernstein��

Department of Electrical and Computer Engineering
University of New Mexico, Albuquerque, NM 87131 USA

Abstract. The ability to provide uniform shared-memory access to a
significant number of processors in a single SMP node brings us much
closer to the ideal PRAM parallel computer. In this paper, we develop
new techniques for designing a uniform shared-memory algorithm from
a PRAM algorithm and present the results of an extensive experimental
study demonstrating that the resulting programs scale nearly linearly
across a significant range of processors and across the entire range of in-
stance sizes tested. This linear speedup with the number of processors is
one of the first ever attained in practice for intricate combinatorial prob-
lems. The example we present in detail here is for evaluating arithmetic
expression trees using the algorithmic techniques of list ranking and tree
contraction; this problem is not only of interest in its own right, but is
representative of a large class of irregular combinatorial problems that
have simple and efficient sequential implementations and fast PRAM
algorithms, but have no known efficient parallel implementations. Our
results thus offer promise for bridging the gap between the theory and
practice of shared-memory parallel algorithms.

Keywords: Expression Evaluation, Tree Contraction, Parallel Graph
Algorithms, Shared Memory, High-Performance Algorithm Engineering.

1 Introduction

Symmetric multiprocessor (SMP) architectures, in which several processors op-
erate in a true, hardware-based, shared-memory environment and are packaged
as a single machine, are becoming commonplace. Indeed, most of the new high-
performance computers are clusters of SMPs having from 2 to over 100 processors
per node. The ability to provide uniform-memory-access (UMA) shared-memory

� Supported in part by NSF Grants CAREER ACI-00-93039, ITR ACI-00-81404,
DEB-99-10123, ITR EIA-01-21377, and Biocomplexity DEB-01-20709.

�� Supported by an NSF Research Experience for Undergraduates (REU).

S. Sahni et al. (Eds.) HiPC 2002, LNCS 2552, pp. 63–75, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

64 David A. Bader et al.

for a significant number of processors brings us much closer to the ideal paral-
lel computer envisioned over 20 years ago by theoreticians, the Parallel Ran-
dom Access Machine (PRAM) (see [13, 19]) and thus may enable us at last to
take advantage of 20 years of research in PRAM algorithms for various irregu-
lar computations. Moreover, as supercomputers increasingly use SMP clusters,
SMP computations will play a significant role in supercomputing. For instance,
much attention has been devoted lately to OpenMP [17], that provides com-
piler directives and runtime support to reveal algorithmic concurrency and thus
takes advantage of the SMP architecture; and to mixed-mode programming, that
combines message-passing style between cluster nodes (using MPI) and shared-
memory style within each SMP (using OpenMP or POSIX threads).

While an SMP is a shared-memory architecture, it is by no means the PRAM
used in theoretical work—synchronization cannot be taken for granted and the
number of processors is far smaller than that assumed in PRAM algorithms.
The significant feature of SMPs is that they provide much faster access to their
shared-memory than an equivalent message-based architecture. Even the largest
SMP to date, the recently delivered 106-processor Sun Fire Enterprise 15000
(E15K), has a worst-case memory access time of 450ns (from any processor to
any location within its 576GB memory); in contrast, the latency for access to the
memory of another processor in a distributed-memory architecture is measured
in tens of µs. In other words, message-based architectures are two orders of
magnitude slower than the largest SMPs in terms of their worst-case memory
access times.

The largest SMP architecture to date, the Sun E15K [5] (a system three- to
five-times faster than its predecessor, the E10K [4]), uses a combination of data
crossbar switches, multiple snooping buses, and sophisticated cache handling
to achieve UMA across the entire memory. Of course, there remains a large
difference between the access time for an element in the local processor cache
(around 10ns) and that for an element that must be obtained from memory (at
most 450ns)—and that difference increases as the number of processors increases,
so that cache-aware implementations are even more important on large SMPs
than on single workstations. Fig. 1 illustrates the memory access behavior of the
Sun E10K (right) and its smaller sibling, the E4500 (left), using a single processor
to visit each 32-bit node in a circular array. We chose patterns of access with
a fixed stride, in powers of 2 (labeled C, stride), as well as a random access
pattern (labeled R). The data clearly show the effect of addressing outside the
on-chip cache (the first break, at a problem size of size greater than 212 words,
or 16KB — the size of L1 cache) and then outside the L2 cache (the second
break, at a problem size of greater than 220 words, or 4MB). The uniformity of
access times was impressive—standard deviations around our reported means are
well below 10 percent. Such architectures make it possible to design algorithms
targeted specifically at SMPs.

Arithmetic Expression Evaluation (AEE) has important uses in a wide-range
of problems ranging from computer algebra and evaluation of logical queries
to compiler design. Its classical parallel formulation uses the technique of tree

Evaluating Arithmetic Expressions Using Tree Contraction 65

log2 (Problem Size)

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

T
im

e
pe

r
m

em
or

y
re

ad
(n

s)

10 ns

100 ns

1000 ns

C, 1
C, 2
C, 4
C, 8
C, 16
C, 32
C, 64
R

Sun Enterprise 4500

log2 (Problem Size)

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

T
im

e
pe

r
m

em
or

y
re

ad
(n

s)

10 ns

100 ns

1000 ns

C, 1
C, 2
C, 4
C, 8
C, 16
C, 32
C, 64
R

Sun Enterprise 10000

Fig. 1. Memory access (read) time using one 400 MHz UltraSPARC II processor
of a Sun E4500 (left) and an E10K (right) as a function of array size for various
strides

contraction when the expression is represented as a tree with a constant at each
leaf and an operator at each internal vertex. AEE involves computing the value
of the expression at the root of the tree. Hence, AEE is a direct application of
the well studied tree contraction technique, a systematic way of shrinking a tree
into a single vertex.

Miller and Reif [16] designed an exclusive-read exclusive-write (EREW)
PRAM algorithm for evaluating any arithmetic expression of size n, which
runs in O(logn) time using O(n) processors (with O(n logn) work). Subse-
quently Cole and Vishkin [6] and Gibbons and Rytter [8] independently de-
veloped O(logn)-time O(n/ logn)-processors (with O(n) work) EREW PRAM
algorithms. Kosaraju and Delcher [15] developed a simplified version of the al-
gorithm in [8] which runs in the same time-processor bounds (O(logn)-time
O(n/ logn)-processors (with O(n) work) on the EREW PRAM). Recently, sev-
eral researchers in [3, 7] present theoretic observation that this classical PRAM
algorithm for tree contraction on a tree T with n vertices can run on the Coarse-
Grained Multicomputer (CGM) parallel machine model with p processors in
O(log p) communication rounds with O

(
n
p

)
local computation per round.

2 Related Experimental Work

Several groups have conducted experimental studies of graph algorithms on par-
allel architectures (for example, [11, 12, 14, 18, 20, 9]). However, none of these
related works use test platforms that provide a true, scalable, UMA shared-
memory environment and still other studies have relied on ad hoc hardware [14].
Thus ours is the first study of speedup for over tens of processors (and promise
to scale over a significant range of processors) on a commercially available plat-
form. In a recent work of ours ([2]) we study the problem of decomposing graphs
with the ear decomposition using similar shared-memory platforms.

66 David A. Bader et al.

Our work in this paper focuses on a parallel implementation of the tree con-
traction technique specific to the application of expression evaluation on symmet-
ric multiprocessors (SMPs). The implementation is based on the classic PRAM
algorithm (e.g., see [15] and [13]). We begin with the formal description of the
parallel algorithm implemented. Next we detail the implementation including
the empirical and testing environment and present results of the experiments.
The last section provides our conclusions and future work.

3 The Expression Evaluation Problem

AEE is the problem of computing the value of an expression that is represented
as a tree with a constant at each leaf and an operator at each internal vertex
of the tree. For a parallel formulation, we use the tree contraction technique to
shrink the tree to its root. For simplicity, our study is restricted to expressions
with binary associative operators. Hence, the trees are binary with each vertex u
excluding the root of the tree having only one sibling sib(u). This technique can
also be used with expressions having non-binary operators by considering unary
operators with their identity elements and converting general trees resulting from
ternary operators to binary trees as a preprocessing phase of the algorithm [13].
For the sake of discussion and without loss of generality, let us assume that the
internal vertices contain either the addition operator + or the multiplication
operator ×.

The simple parallel solution of evaluating each subexpression (two sibling
leaves and their parent) in parallel and setting the parents of the vertices evalu-
ated equal to the value of the subexpression until the root is reached works well
when the tree is well-balanced. In the extreme case of a “caterpillar” tree, when
the tree is a long chain with leaves attached to it, this solution requires a linear
number of iterations similar to the sequential solution. Hence, an optimal solu-
tion should ease the above restriction that each vertex must be fully evaluated
before its children can be removed.

The rake operation is used to remove the vertices from the tree, thus con-
tracting it. Let T be a rooted binary tree with root r and let p(v), sib(v) and
p(p(v)) represent the parent, sibling, and grandparent of a vertex v respectively.
The rake operation when applied to a leaf v (p(v) �= r) of the tree removes v and
p(v) from T and connects sib(v) to p(p(v)). The rake operation is illustrated in
Fig. 2.

The value of a vertex v, denoted by val(v) is defined as the value of the
subexpression (subtree rooted) at v. The value of a leaf is simply the constant
value stored in the leaf. To accomplish partial evaluation, each vertex v of the
tree T is associated with a label (av, bv) such that the contribution of a vertex
to its parent’s value is given by the expression avval(v) + bv. The label of each
vertex is initialized to (1, 0). Let u be an internal vertex of the tree such that u
holds the operator ⊕ ∈ {+,×} and has left child v and right child w. The
value of vertex u is given by val(u) = (avval(v) + bv) ⊕u (awval(w) + bw). The
value contributed by u to the vertex p(u) is given by E = auval(u) + bu =

Evaluating Arithmetic Expressions Using Tree Contraction 67

p(p(v))

p(v)

v sib(v)

p(p(v))

sib(v)

Raking Leaf v

Fig. 2. Rake of leaf v: removes vertices v and p(v) from the tree and makes the
sibling sib(v) of vertex v, the child of grandparent p(p(v)) of v

au[(avval(v)+ bv)⊕u (awval(w)+ bw)]+ bu. Say v is the left leaf of u. On raking
leaf v, E is simplified to a linear expression in the unknown value of w, namely
val(w). The labels of w are then updated to maintain the value contributed to
p(u). The augmented rake operation that modifies the sibling labels as described
above maintains the value of the arithmetic expression. The original binary tree
is contracted to a three-vertex tree with root r and two leaves v1 and v2 by
applying the augmented rake operation repeatedly and concurrently to the tree.
The value of the arithmetic expression is then given by the value of the root
which is given by val(T) = val(r) = (av1val(v1) + bv1) ⊕r (av2val(v2) + bv2).

The next section formally describes the PRAM algorithm in detail.

4 Review of the PRAM Algorithm for Expression
Evaluation

The PRAM algorithm consists of three main steps. The first step identifies and
labels the leaves. The second step contracts the input binary tree to a three-
vertex tree using the augmented rake operation. The resultant tree contains the
root and the left- and right-most leaves of the original tree with labels suitably
updated to maintain the value of the arithmetic expression. The third step com-
putes the final value of the arithmetic expression from the three-vertex binary
tree as described in the previous section. The concurrent rake of two leaves that
are siblings or whose parents are adjacent must be avoided as this would lead
to an inconsistent resultant structure. Hence, a careful application of the rake
operation for tree contraction is required.

Alg. 4 evaluates a given arithmetic expression using the PRAM model (from
[13]). After Step (2) of Alg. 4, we have a three-vertex tree T ′ with a root r
holding an operator ⊕r and two leaves, the left- and right-most leaves, u and v
containing the constants cu and cv with labels (au, bu) and (av, bv), respectively.
These labels hold the relevant information from the vertices that have been
raked. Hence, the value of the subexpression at the root r is the value of the
given arithmetic expression. This value is given by

val(T) = val(T ′) = val(r) = (aucu + bu)⊕r (avcv + bv). (1)

68 David A. Bader et al.

Algorithm 1: PRAM Algorithm for AEE

Alg. 4 ensures that two leaves that are siblings or whose parents are adjacent
are never raked concurrently (for proof refer to [15]). Hence the rake operations
are applied correctly and the algorithm is correct. Step (1), labeling the leaves
of the tree, can be implemented using the Euler tour technique and using the
optimal list ranking algorithm to obtain the labels. Hence this step takes O(logn)
time using O(n) operations. Given an array A, Aodd and Aeven (containing the
odd and even indexed elements of A respectively) can be obtained in O(1) time
using a linear number of operations. The augmented rake operations that modify
the sibling labels in Steps (2.1) and (2.2) are done in parallel and hence take
O(1) time each. Step (2.3) takes O(1) time. The number of operations required
by each iteration is O(|A|), where |A| represents the current size of the array A.
Since the size of the array A decreases by half each iteration, the total number
of operations required by Step (2) is O

(∑
i(n/2i)

)
= O(n). Hence, this step

takes O(logn) time using O(n) operations. Finally, computing the value of the
arithmetic expression from the three-vertex binary tree in Step (3) takes O(1)
time and O(1) work. Therefore, arithmetic expression evaluation takes O(logn)
time using O(n) operations on an EREW PRAM.

Note that the rake operation used for contracting the tree does not create
any new leaves. Hence, the data copy in Step (2.3) of Alg. 4 can be completely
avoided by replacing Step (2) with Alg. 4. For further details refer to [15]. This
modified algorithm has the same complexity bounds as the original algorithm.

Evaluating Arithmetic Expressions Using Tree Contraction 69

5 SMP Algorithm for AEE

This section begins with the description of the programming environment used
for the implementation. The methodology for converting a PRAM algorithm to
a practical SMP algorithm is then described. The actual implementation details
are then given. This section ends with the description of the cost model used for
analyzing the SMP algorithm and a thorough analysis of the algorithm.
SMP Libraries Our practical programming environment for SMPs is based
upon the SMP Node Library component of SIMPLE [1], that provides a portable
framework for describing SMP algorithms using the single-program multiple-
data (SPMD) program style. This framework is a software layer built from
POSIX threads that allows the user to use either the already developed SMP
primitives or the direct thread primitives. We have been continually developing
and improving this library over the past several years and have found it to be
portable and efficient on a variety of operating systems (e.g., Sun Solaris, Com-
paq/Digital UNIX, IBM AIX, SGI IRIX, HP-UX, and Linux). The SMP Node
Library contains a number of SMP node algorithms for barrier synchronization,
broadcasting the location of a shared buffer, replication of a data buffer, re-
duction, and memory management for shared-buffer allocation and release. In
addition to these functions, we have control mechanisms for contextualization
(executing a statement on only a subset of processors), and a parallel do that
schedules n independent work statements implicitly to p processors as evenly as
possible.

The PRAM model assumes the availability of as many processors as needed
and a synchronous mode of operation. However, SMPs have a limited number
of processors and barriers have to be explicitly used to enforce synchroniza-
tion. Hence the original PRAM algorithm for AEE can be converted to an SMP
algorithm by balancing the work between the available processors and synchro-
nizing the processors between the various steps and substeps of the algorithm.
These barriers enforce synchronization and hence the algorithm works correctly
on a SMP.
Implementation Details Labeling the leaves is done as follows. Each origi-
nal tree edge is converted into a pair of directed arcs and weighted as follows.

Algorithm 2: Modified Step (2) of PRAM Algorithm for AEE

70 David A. Bader et al.

A directed arc leaving a leaf vertex is assigned a weight of one; all other arcs are
given a weight of zero. The Euler tour of the given tree is then constructed. This
Euler tour is represented by a successor array with each node storing the index
of its successor. This is followed by list ranking to obtain a consecutive label-
ing of the leaves. Our implementation uses the SMP list ranking algorithm and
implementation developed by Helman and JáJá [10] that performs the following
main steps:

1. Finding the head h of the list which is given by h = (n(n−1)/2−Z) where Z
is the sum of successor indices of all the nodes in the list.

2. Partitioning the input list into s sublists by randomly choosing one splitter
from each memory block of n/(s−1) nodes, where s is Ω(p logn), where p is
the number of processors. Corresponding to each of these sublists is a record
in an array called Sublists. (Our implementation uses s = 8p.)

3. Traversing each sublist computing the prefix sum of each node within the
sublists. Each node records its sublist index. The input value of a node in
the Sublists array is the sublist prefix sum of the last node in the previous
Sublists.

4. The prefix sums of the records in the Sublists array are then calculated.
5. Each node adds its current prefix sum value (value of a node within a sublist)

and the prefix sum of its corresponding Sublists record to get its final prefix
sums value. This prefix sum value is the required label of the leaves.

For a detailed description of the above steps refer to [10]. Pointers to the leaf
vertices are stored in an array A. This completes Step (1) of AEE algorithm.

Given the array A, the rake operation is applied by updating the neces-
sary pointers in the tree’s data structure. The concurrent rake operations in
Steps (2.1) and (2.2) are handled similarly. Each processor is responsible for an
equal share (at most 	R/p
) of the R leaves in Aodd , and rakes the appropriate
leaves in each of these two steps, with a barrier synchronization following each
step. Step (2.3) copies the remaining leaves (Aeven) into another array B. Thus
iterations of the for loop alternate between using the A and B arrays for the
rake operation and store the even leaves in the other array at Step (2.3) of the
iteration. Finally, the value of the given expression is computed from the re-
sultant three-vertex binary tree. Hence this implementation, while motivated by
the PRAM algorithm, differs substantially in its SMP implementation due to the
limited number of processors and need for explicit synchronization. In addition,
to achieve high-performance, our SMP implementation must make good use of
cache.

Alternatively, we could use Alg. 4 for the second step that eliminates the
data copy between arrays A and B. While this modification uses less space (only
a single array of leaf pointers), it has the disadvantage that due to the increasing
strides of reading the leaves from the A array, more cache misses are likely.

SMP Cost Model We use the SMP complexity model proposed by Hel-
man and JáJá [10] to analyze our shared memory algorithms. In the SMP
complexity model, we measure the overall complexity of the algorithm by the

Evaluating Arithmetic Expressions Using Tree Contraction 71

triplet (MA, ME, TC). The term MA is simply a measure of the number of
non-contiguous main memory accesses, where each such access may involve an
arbitrary-sized contiguous blocks of data. ME is the maximum amount of data
exchanged by any processor with main memory. TC is an upper bound on the
local computational complexity of any of the processors and is represented by
the customary asymptotic notation. MA, ME are represented as approximations
of the actual values. In practice, it is often possible to focus on either MA or ME

when examining the cost of algorithms.

Algorithmic Analysis The first step of the algorithm uses the List Ranking
algorithm developed by Helman and JáJá [10]. For n > p2 lnn, we would expect
in practice list ranking to take

T (n, p) = (MA(n, p);TC(n, p)) =
(

n

p
,O

(
n
p

))
. (2)

Tree contraction requires O(log n) iterations, where iteration i, for 1 ≤ i ≤
logn rakes n/2i leaves concurrently. Since each rake operation requires a constant
number of memory accesses of unit size, the tree contraction takes

T (n, p) = (MA(n, p);TC(n, p)) =
(
logn +

n

p
,O

(
logn + n

p

))
. (3)

For n > p logn, this simplifies to the same complexity as in Eq. 2.
Thus, for n > p2 lg n, evaluating arithmetic expressions with O(n) vertices

on a p processor shared-memory machine takes

T (n, p) = (MA(n, p);TC(n, p)) =
(

n

p
,O

(
n
p

))
. (4)

6 Experimental Results

This section summarizes the experimental results of our implementation. We
tested our shared-memory implementation on the Sun HPC 10000, a UMA
shared memory parallel machine with 64 UltraSPARC II processors and 64 GB
of memory. Each processor has 16 Kbytes of direct-mapped data (L1) cache and
4 Mbytes of external (L2) cache. The clock speed of each processor is 400 MHz.

Experimental Data. In order to test the performance of our algorithm, we
designed a collection of tree generators that when given an integer d, could
generate arbitrarily large regular and irregular rooted, binary trees of n = 2d−1
vertices. Each generated tree is a strict binary tree, meaning that each vertex
has either both subtrees empty or neither subtree empty. Thus, each test tree
has n vertices and (n + 1)/2 leaves. Let the level of a vertex be the number of
edges on the path between it and the root. We then generate the following three
kinds of strict binary trees:

72 David A. Bader et al.

FULL: These are full, binary trees with 2l internal vertices at each level l, for
0 ≤ l < d − 1, and (n + 1)/2 leaves at the last level l = d − 1.

CAT: These “caterpillar” trees are basically long chains of vertices with one leaf
attached at each internal vertex, except for two leaves at the bottom (level
(n−1)/2). Hence, the root is at level 0, and each level l, for 1 ≤ l ≤ (n−1)/2,
has exactly two vertices.

RAN: Unlike the full and the caterpillar trees, this is an irregular class of
binary tree with no specific structure. We randomly create this input using
an unrake-like (reverse rake) operation. Each tree is constructed by randomly
choosing one of the vertices v in the current tree (except the root) and
introducing a new vertex u and a leaf w at the chosen vertex position. More
specifically, u becomes the child of p(v) replacing v and w and v become the
new children of u. The sub-tree rooted at v remains unaltered. We initially
start with a three-vertex tree containing the root and two leaves and build
the tree randomly until the tree contains a total of n vertices.

Alg. 4 consists of four main substeps, namely 1) the Euler tour computation,
2) list ranking, 3) copying leaves in the array A, and 4) the rake operation that
contracts the tree to a three-vertex tree and computes the final value of the
arithmetic expression. The running times of our implementation of Alg. 4 for
various sizes of FULL, CAT and RAN trees on different numbers of processors
are plotted in Fig. 3. The experiments were performed for d ≤ 25 with the
number p of processors equal to 2, 4, 8, 16, and 32, and using 32-bit integers.
For d = 25 we also give a step-by-step breakdown of the execution time. In all
cases, for a particular class of input tree, the implementation performs faster as
more processors are employed. The regular trees (FULL and CAT) represent
special cases of expressions and run faster than the irregular input (RAN) that
represents the most common class of expressions that have an irregular structure.
Note that the irregular trees have a longer running time (primarily due to cache
misses since the same number of rake operations per iteration are performed), but
exhibit a nearly linear relative speedup. This performance matches our analysis
(Eq. 4).

Finally, we have implemented a linear sequential time, non-recursive version
of expression evaluation to provide sequential timing comparisons. It is important
to note that the hidden asymptotic constant associated with the sequential code
is very small (close to one), while the parallel code has a much larger hidden
constant. Even so, our parallel code is faster than the sequential version when
enough processors are used, and in the most general case, the irregular input
trees.

In Fig. 4 we compare the performance of the rake substep, that is, Step (2)
in Algs. 4 and 4 for d = 25 on a range of processors. These experimental results
confirm that the improved cache hit rate in Alg. 4 overcomes the time spent
copying data between the A and B leaf pointer arrays. The improvement, though,
is only noticeable when the input trees are regular.

Evaluating Arithmetic Expressions Using Tree Contraction 73

Total Execution Time Breakdown of Time for d = 25

a) FULL

b) CAT

c) RAN

Fig. 3. Expression evaluation execution time for FULL, CAT, and RAN trees.
The left-hand graphs plot the total running time taken for varying input sizes
and numbers of processors. The corresponding graphs on the right give a step-
by-step breakdown of the running time for a fixed input size (225 − 1 vertices)
and the number p of processors from 2 to 32

74 David A. Bader et al.

a) FULL b) CAT c) RAN

Fig. 4. Comparison of time for rake step for FULL, CAT, and RAN trees for
a fixed input size (225 − 1 vertices) and the number p of processors from 2 to 32

7 Conclusions

In summary, we present optimistic results that for the first time, show that
parallel algorithms for expression evaluation using tree contraction techniques
run efficiently on parallel symmetric multiprocessors. Our new implementations
scale nearly linearly with the problem size and the number of processors, as
predicted by our analysis in Eq. 4. These results provide optimistic evidence
that complex graph problems that have efficient PRAM solutions, but no known
efficient parallel implementations, may have scalable implementations on SMPs.

References

[1] D.A. Bader and J. JáJá. SIMPLE: A methodology for programming high perfor-
mance algorithms on clusters of symmetric multiprocessors (SMPs). J. Parallel
& Distributed Comput., 58(1):92–108, 1999. 69

[2] D.A. Bader, A.K. Illendula, B.M.E. Moret, and N. Weisse-Bernstein. Using
PRAM algorithms on a uniform-memory-access shared-memory architecture. In
G. S. Brodal, D. Frigioni, and A. Marchetti-Spaccamela, editors, Proc. 5th Int’l
Workshop on Algorithm Engineering (WAE 2001), volume 2141 of Lecture Notes
in Computer Science, pages 129–144, Århus, Denmark, August 2001. Springer-
Verlag. 65

[3] E. Cáceres, F. Dehne, A. Ferreira, P. Flocchini, I. Rieping, A. Roncato, N. Santoro,
and S.W. Song. Efficient parallel graph algorithms for coarse grained multicom-
puters and BSP. In Proc. 24th Int’l Colloquium on Automata, Languages and
Programming (ICALP’97), volume 1256 of Lecture Notes in Computer Science,
pages 390–400, Bologna, Italy, 1997. Springer-Verlag. 65

[4] A. Charlesworth. Starfire: extending the SMP envelope. IEEE Micro, 18(1):39–49,
1998. 64

[5] A. Charlesworth. The Sun Fireplane system interconnect. In Proc. Supercomput-
ing (SC 2001), pages 1–14, Denver, CO, November 2001. 64

[6] R. Cole and U. Vishkin. The accelerated centroid decomposition technique for
optimal parallel tree evaluation in logarithmic time. Algorithmica, 3:329–346,
1988. 65

Evaluating Arithmetic Expressions Using Tree Contraction 75

[7] F. Dehne, A. Ferreira, E. Cáceres, S.W. Song, and A. Roncato. Efficient paral-
lel graph algorithms for coarse-grained multicomputers and BSP. Algorithmica,
33:183–200, 2002. 65

[8] A.M. Gibbons and W. Rytter. An optimal parallel algorithm for dynamic ex-
pression evaluation and its applications. Information and Computation, 81:32–45,
1989. 65

[9] B. Grayson, M. Dahlin, and V. Ramachandran. Experimental evaluation of QSM,
a simple shared-memory model. In Proc. 13th Int’l Parallel Processing Symp. and
10th Symp. Parallel and Distributed Processing (IPPS/SPDP), pages 1–7, San
Juan, Puerto Rico, April 1999. 65

[10] D.R. Helman and J. JáJá. Designing practical efficient algorithms for symmetric
multiprocessors. In Algorithm Engineering and Experimentation (ALENEX’99),
volume 1619 of Lecture Notes in Computer Science, pages 37–56, Baltimore, MD,
January 1999. Springer-Verlag. 70, 71

[11] T.-S. Hsu and V. Ramachandran. Efficient massively parallel implementation of
some combinatorial algorithms. Theoretical Computer Science, 162(2):297–322,
1996. 65

[12] T.-S. Hsu, V. Ramachandran, and N. Dean. Implementation of parallel graph
algorithms on a massively parallel SIMD computer with virtual processing. In
Proc. 9th Int’l Parallel Processing Symp., pages 106–112, Santa Barbara, CA,
April 1995. 65

[13] J. JáJá. An Introduction to Parallel Algorithms. Addison-Wesley Publishing
Company, New York, 1992. 64, 66, 67

[14] J. Keller, C.W. Keßler, and J. L. Träff. Practical PRAM Programming. John
Wiley & Sons, 2001. 65

[15] S.R. Kosaraju and A.L. Delcher. Optimal parallel evaluation of tree-structured
computations by raking (extended abstract). Technical report, The Johns Hopkins
University, 1987. 65, 66, 68

[16] G. L. Miller and J. H. Reif. Parallel tree contraction and its application. In
Proc. 26th Ann. IEEE Symp. Foundations of Computer Science (FOCS), pages
478–489, Portland, OR, October 1985. IEEE Press. 65

[17] OpenMP Architecture Review Board. OpenMP: A proposed industry standard
API for shared memory programming. www.openmp.org, October 1997. 64

[18] M. Reid-Miller. List ranking and list scan on the Cray C-90. J. Comput. Syst. Sci.,
53(3):344–356, December 1996. 65

[19] J.H. Reif, editor. Synthesis of Parallel Algorithms. Morgan Kaufmann Publishers,
1993. 64

[20] J. Sibeyn. Better trade-offs for parallel list ranking. In Proc. 9th Ann. Symp. Par-
allel Algorithms and Architectures (SPAA-97), pages 221–230, Newport, RI, June
1997. ACM. 65

www.openmp.org

	Evaluating Arithmetic Expressions Using Tree Contraction: A Fast and Scalable Parallel Implementation for Symmetric Multiprocessors (SMPs) (Extended Abstract)
	Introduction
	Related Experimental Work
	The Expression Evaluation Problem
	Review of the PRAM Algorithm for Expression Evaluation
	SMP Algorithm for AEE
	SMP Libraries
	Implementation Details
	SMP Cost Model
	Algorithmic Analysis

	Experimental Results
	Experimental Data.

	Conclusions

