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ABSTRACT

Hannenhalli and Pevzner gave the �rst polynomial-time algorithm for computing the inver-
sion distance between two signed permutations, as part of the larger task of determining the
shortest sequence of inversions needed to transform one permutation into the other. Their
algorithm (restricted to distance calculation) proceeds in two stages: in the �rst stage, the
overlap graph induced by the permutation is decomposed into connected components; then,
in the second stage, certain graph structures (hurdles and others) are identi�ed. Berman and
Hannenhalli avoided the explicit computation of the overlap graph and gave an O(na(n))
algorithm, based on a Union-Find structure, to �nd its connected components, where a is
the inverse Ackerman function. Since for all practical purposes a(n) is a constant no larger
than four, this algorithm has been the fastest practical algorithm to date. In this paper,
we present a new linear-time algorithm for computing the connected components, which is
more ef�cient than that of Berman and Hannenhalli in both theory and practice. Our algo-
rithm uses only a stack and is very easy to implement. We give the results of computational
experiments over a large range of permutation pairs produced through simulated evolution;
our experiments show a speed-up by a factor of 2 to 5 in the computation of the connected
components and by a factor of 1.3 to 2 in the overall distance computation.

Key words: signed permutation, sorting by reversals, inversion distance, overlap graph, cycle
graph, overlap forest.

1. INTRODUCTION

Some organisms have a single chromosome or contain single-chromosome organelles (such as
mitochondria or chloroplasts), the evolution of which is largely independent on the evolution of the

nuclear genome. Given a particular strand from a single chromosome, whether linear or circular, we can
infer the ordering and directionality of the genes, thus representing each chromosome by an ordering of
oriented genes. In many cases, the evolutionary process that operates on such single-chromosome organisms
consists mostly of inversions of portions of the chromosome; this �nding has led many biologists to
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reconstruct phylogenies based on gene orders, using as a measure of evolutionary distance between two
genomes the inversion distance, i.e., the smallest number of inversions needed to transform one signed
permutation into the other (Olmstead and Palmer, 1994; Palmer, 1992; Raubeson and Jansen, 1992).

Both inversion distance and the closely related transposition distance are dif�cult computational prob-
lems that have been studied intensively over the last �ve years (Bafna and Pevzner, 1995; Bafna and
Pevzner, 1996; Bafna and Pevzner, 1998; Berman and Hannenhalli, 1996; Caprara, 1997; Caprara, 1999;
Hannenhalli and Pevzner, 1995; Kaplan, Shamir, and Tarjan, 1999). Finding the inversion distance between
unsigned permutations is NP-hard (Caprara, 1997), but with signed ones, it can be done in polynomial
time (Hannenhalli and Pevzner, 1995). The fastest published algorithm for the computation of inversion
distance between two signed permutations has been that of Berman and Hannenhalli (1996), which uses
a Union-Find data structure and runs in O.n®.n// time, where ®.n/ is the inverse Ackerman function.
(The later KST algorithm (Kaplan, Shamir, and Tarjan, 1999) reduces the time needed to compute the
shortest sequence of inversions, but uses the same algorithm for computing the length of that sequence.)
We have found only two implementations on the web, both designed to compute the shortest sequence of
inversions as well as its length; one, due to Hannenhalli (Hannenhalli, URL), implements his �rst algorithm
(Hannenhalli and Pevzner, 1995), which runs in quadratic time when computing distances, while the other,
a Java applet written by Mantin (Mantin and Shamir, 1999), a student of Shamir, implements the KST
algorithm (Kaplan, Shamir, and Tarjan, 1999), but uses an explicit representation of the overlap graph and
thus also takes quadratic time.

We present a simple and practical, worst-case linear-time algorithm to compute the connected components
of the overlap graph, which results in a simple linear-time algorithm for computing the inversion distance
between two signed permutations. We also provide ample experimental evidence that our linear-time
algorithm is ef�cient in practice as well as in theory: we coded it, as well as the algorithm of Berman
and Hannenhalli, using the best principles of algorithm engineering (McGeoch, 1996; Moret and Shapiro,
2001) to ensure that both implementations would be as ef�cient as possible and compared their running
times on a large range of instances generated through simulated evolution. (The two implementations on
the web are naturally far slower).

The paper is organized as follows. We begin by recalling some de�nitions, brie�y review past work
on sorting by reversals, then introduce the concepts that we will need in our algorithm including the
fundamental theorem that makes it possible. We then describe and analyze our algorithm, discuss our
experimental setup, present and comment on our results, and brie�y mention an application of our distance
computation in a whole-genome phylogeny study.

2. INVERSIONS ON SIGNED PERMUTATIONS

We assume a �xed set of genes fg1; g2; : : : ; gng. Each genome is then an ordering (circular or linear)
of these genes, each gene given with an orientation that is either positive (gi) or negative (¡gi). The
ordering g1; g2; : : : ; gn , whether linear or circular, is considered equivalent to that obtained by considering
the complementary strand, i.e., the order ¡gn; ¡gn¡1; : : : ; ¡g1.

Let G be the genome with signed ordering (linear or circular) g1; g2; : : : ; gn . An inversion between
indices i and j , for i · j , produces the genome with linear ordering

g1; g2; : : : ; gi¡1; ¡gj ; ¡gj¡1; : : : ; ¡gi; gj C1; : : : ; gn:

If we have j < i, we can still apply an inversion to a circular (but not linear) genome by simply rotating the
circular ordering until the two indices are in the proper relationship—recall that we consider all rotations
of the complete circular ordering of a circular genome as equivalent.

The inversion distance between two genomes (two signed permutations of the same set) is then the
minimum number of inversions that must be applied to one genome in order to produce the other. (This
measure is easily seen to be a true metric.) Computing the shortest sequence of inversions that gives rise
to this distance is also known as sorting by reversals—we shall shortly see why it can be regarded as a
sorting problem.
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3. PREVIOUS WORK

Bafna and Pevzner (1993) introduced the cycle graph of a permutation, thereby providing the basic data
structure for inversion distance computations. Hannenhalli and Pevzner then developed the basic theory
for expressing the inversion distance in easily computable terms (number of breakpoints minus number of
cycles plus number of hurdles plus a correction factor for a fortress (Bafna and Pevzner, 1993; Setubal and
Meidanis, 1997)—hurdles and fortresses are easily detectable from a connected component analysis). They
also gave the �rst polynomial-time algorithm for sorting signed permutations by reversals (Hannenhalli and
Pevzner, 1995); they also proposed a O.n4/ implementation of their algorithm (Hannenhalli, URL), which
runs in quadratic time when restricted to distance computation. Their algorithm requires the computation
of the connected components of the overlap graph, which is the bottleneck for the distance computation.
Berman and Hannenhalli (1996) later exploited some combinatorial properties of the cycle graph to give
a O.n®.n// algorithm to compute the connected components, leading to a O.n2®.n// implementation
of the sorting algorithm. (We will refer to this approach as the UF approach.) Algorithms for �nding
the connected components of interval graphs (a class of graphs that include the more specialized overlap
graphs used in sorting by reversals) that run in linear time are known, but they use range minima and
lowest common ancestor data structures and algorithms so that, in addition to being complex and hard to
implement, they suffer from high overhead—high enough, in fact, that the UF approach would remain the
faster solution in practice.

4. OVERLAP GRAPH AND FOREST

Given a signed permutation of f1; : : : ; ng, we transform it into an unsigned permutation ¼ of f1; : : : ; 2ng
by substituting the ordered pair .2x ¡ 1; 2x/ for the positive element x and the ordered pair .2x; 2x ¡ 1/

for the negative elements ¡x then extend ¼ to the set f0; 1; : : : ; 2n; 2n C 1g by setting ¼.0/ D 0 and
¼.2n C 1/ D 2n C 1. By convention, we assume that the two signed permutations for which we must
compute a distance have been turned in this manner into unsigned permutations and then both have
been permuted (by the same transformation) so that the �rst permutation becomes the linear ordering
.0; 1; : : : ; 2n; 2n C 1/; these manipulations do not affect the distance value. (This is the reason why
transforming one permutation into the other can be viewed as sorting—we want to �nd out how many
inversions are needed to produce the identity permutation from the given one.) We represent an extended
unsigned permutation with an edge-colored graph, the cycle graph of the permutation. The graph has 2nC2
vertices; for each i, 0 · i · n, we join vertices ¼.2i/ and ¼.2i C 1/ by a gray edge and vertices 2i and
2i C 1 by a black edge, as illustrated in Fig. 1(a). The resulting graph consists of disjoint cycles in which

FIG. 1. The signed permutation (C3, C9, ¡7, C5, ¡10, C8, C4, ¡6, C11, C2, C1) and its various representations.
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edges alternate colors; we remove from it all 2-cycles (because these cycles correspond to portions of the
permutation that are already sorted and cannot intersect with any other cycles).

We say that gray edges .¼.i/; ¼.j // and .¼.k/; ¼.t// overlap whenever the two intervals [i; j ] and
[k; t ] overlap, but neither contains the other. Similarly, we say that cycles C1 and C2 overlap if there exist
overlapping gray edges e1 2 C1 and e2 2 C2.

De�nition 1. The overlap graph of permutation ¼ has one vertex for each cycle in the cycle graph
and an edge between any two vertices that correspond to overlapping cycles.

Figure 1 illustrates the concept. The extent of cycle C is the interval [C:B;C:E], where we have
C:B D minfi j ¼.i/ 2 Cg and C:E D maxfi j ¼.i/ 2 Cg. The extent of a set of cycles fC1; : : : ; Ckg is
[B; E], with B D mink

iD1 Ci:B and E D maxk
iD1 Ci:E. In Fig. 1, the extent of cycle A is [0; 21], that of

cycle F is [18; 23], and that of the set fA; F g is [0; 23].
No algorithm that actually builds the overlap graph can run in linear time, since that graph can be of

quadratic size. Thus, our goal is to construct an overlap forest such that two vertices f and g belong to the
same tree in the forest exactly when they belong to the same connected component in the overlap graph.
An overlap forest (the composition of its trees is unique, but their structure is arbitrary) has exactly one
tree per connected component of the overlap graph and is thus of linear size.

5. THE LINEAR-TIME ALGORITHM FOR CONNECTED COMPONENTS

Our algorithm for computing the connected components scans the permutation twice. The �rst scan sets
up a trivial forest in which each node is its own tree, labeled with the beginning of its cycle. The second
scan carries out an iterative re�nement of this �rst forest, by adding edges and so merging trees in the
forest; unlike a Union-Find, however, our algorithm does not attempt to maintain the trees within certain
shape parameters.

Recall that a node in the overlap graph (or forest) corresponds to a cycle in the cycle graph. The extent
[f:B; f:E] of a node f of the overlap forest is the extent of the set of nodes in the subtree rooted at f .
Let F0 be the trivial forest set up in the �rst scan and assume that the algorithm has processed elements
0 through j ¡ 1 of the permutation, producing forest Fj¡1. We construct Fj from Fj¡1 as follows. Let
f be the cycle containing element j of the permutation. If j is the beginning of its own cycle f , then it
must be the root of a single-node tree; otherwise, if f overlaps with another cycle g, then we add a new
arc .g; f / and compute the combined extent of g and of the tree rooted at f . We say that a tree rooted
at f is active at stage j whenever j lies properly within the extent of f ; we shall store the extent of the
active trees in a stack.

Figure 2 summarizes our algorithm for constructing the overlap forest; in the algorithm, top denotes
the top element of the stack. The conversion of a forest of up-trees into connected component labels is
accomplished in linear time by a simple sweep of the array, taking advantage of the fact that the parent of
i must appear before i in the array.

Lemma 1. At iteration i of Step (3) of the algorithm, if the tree rooted at top is active and i lies
on cycle f and we have f:B < top:B, then there exists h in the tree rooted at top such that h overlaps
with f .

Proof. Since top is active, it must have been pushed onto the stack before the current iteration (top:B <

i) and we must not have reached the end of top’s extent (i < top:E). Hence, i must be contained in top’s
extent (top:B < i < top:E). Since i lies on the cycle f that begins before top (f:B < top:B), there must
be an edge from cycle f that overlaps with top.

Theorem 1. The algorithm produces a forest in which each tree is composed of exactly those nodes
that form a connected component.
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FIG. 2. Constructing the interleaving forest in linear time.

Proof. It suf�ces to show that, after each iteration, the trees in the forest correspond exactly to the
connected components determined by the permutation values scanned up to that point. We prove this
invariant by induction on the number of applications of Step (3) of the algorithm.

The base case is trivial: each tree of F0 has a single node and no two nodes belong to the same connected
component since we have not yet processed any element of the permutation.

Assume that the invariant holds after the .i ¡ 1/st iteration and let i lie on cycle f . We prove that
the nodes of the tree containing i form the same set as the nodes of the connected component containing
i—other trees and connected components are unaffected and so still obey the invariant.

² We prove that a node in the tree containing i must be in the same connected component as i. If we have
i D f:B, then, as we remarked earlier, nothing changes in the overlap graph (and thus in the connected
components); from Step (3), it is also clear that the forest remains unchanged, so that the invariant is
preserved. On the other hand, if we have i > f:B, then at Step (3) the edge .top; f / will be added to
the forest whenever f:B < top:B holds. This edge will join the subtree rooted at f with that rooted
at top into a single subtree. From Lemma 1, we also know that, whenever f:B < top:B holds, there
must exist h in the tree rooted at top such that h and f overlap, so that edge .h; f / must belong to the
overlap graph, thereby connecting the component containing f with that containing top and merging
them into a single connected component, which maintains the invariant.

² We prove that a node in the same connected component as i must be in the tree containing i . Whenever
.j; i/ and .k; l/, with j < k < i < l, are gray edges on cycles f and h, respectively, then edge .f; h/

must belong to the overlap graph built from the �rst i entries of the permutation. In such a case, our
algorithm ensures that edge .h; f / belong to the overlap forest. Our conclusion follows.

Obviously, each step of the algorithm takes linear time, so the entire algorithm runs in worst-case linear
time.
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6. EXPERIMENTS

6.1. Programs

The implementation due to Hannenhalli is very slow and implements the original method of Hannenhalli
and Pevzner and not the faster one of Berman and Hannenhalli. The KST applet is very slow as well since
it explicitly constructs the overlap graph; it is also written in Java which makes in dif�cult to compare with
C code. For these reasons we wrote our own implementation of the Berman and Hannenhalli algorithm
(just the part handling the distance computation) with a view to ef�ciency. Thus, we not only have
an ef�cient implementation to compare to our linear-time algorithm, but also we have ensured that the
two implementations are truly comparable because they share much of their code (hurdles, fortresses,
breakpoints), were written by the same person, and used the same algorithmic engineering techniques.

6.2. Experimental setup

We ran experiments on signed permutations of length 10, 20, 40, 80, 160, 320, and 640, in order to
verify rate of growth as a function of the number of genes and also to cover the full range of biological
applications. We generated groups of three signed permutations from the identity permutation using the
evolutionary model of Nadeau and Taylor (1984); in this model, randomly chosen inversions are applied
to the permutation at a node to generate the permutations labeling its children, repeating the process until
all nodes have been assigned a permutation. The expected number of inversions per edge, r , is �xed in
advance, re�ecting assumptions about the evolutionary rate in the model. We use �ve evolutionary rates:
4, 16, 64, 256, and 1024 inversions per edge and generated 10 groups of three-leaf trees—or 10 groups
of three genomes each—at each of the six selected lengths. We also generated 10 groups of three random
permutations (from a uniform distribution) at each length to provide an extreme test case. For each of these
42 test suites, we computed the three distances among the three genomes in each group 20,000 times in a
tight loop, in order to provide accurate timing values for a single computation, then averaged the values
over the 10 groups and computed the standard deviation. The computed inversion distances are expected
to be at most twice the evolutionary rate since there are two tree edges between each pair of genomes. Our
linear algorithm exhibited very consistent behavior throughout , with standard deviations never exceeding
2% of the mean; the UF algorithm showed more variation for r D 4 and r D 16.

We ran all our tests on a 300MHz Pentium II with 16KB of L1 data cache, 16KB of L1 instruction
cache, and 512KB of L2 cache running at half clockspeed; our codes were compiled under Linux with the
GNU gcc compiler with options -03 -mpentiumpro. Our code also runs on other systems and machines
(e.g., Solaris and Microsoft), where we observed the same behavior.

6.3. Experimental results

We present our results in four plots. The �rst two (Fig. 3) show the actual running time of our linear-time
algorithm for the computation of the inversion distance between two permutations as a function of the size
of the permutation, with one plot for the computation of the connected components alone and the other
for the complete distance computation. Each plot shows one curve each for the various evolutionary rates
and one for the random permutations. We added a third plot showing the average inversion distance; not
the very close correlation between the distance and the running time.

For small permutation sizes (10 or less), the L1 data cache holds all of the data without any cache
misses, but, as the permutation size grows, the hit rate in the direct-mapped L1 cache steadily decreases
until, for permutations of size 100 and larger, execution has slowed down to the speed of the L2 cache (a
ratio of two). From that point on, it is clear that the rate of growth is linear, as predicted. It is also clear that
r D 1,024 is as high a rate of evolution as we need to test, since the number of connected components and
inversion distance are nearly indistinguishable from those of the random permutations (see the side plot
in Fig. 3 that plots inversion distance as a function of the permutation size). The speed is remarkable: for
a typical genome of 100 gene fragments (as found in chloroplast data, for instance [Cosner et al., 2000]),
well over 20,000 distance computations can be carried out every second on our rather slow workstation.

Our second two plots (Fig. 4) compare the speed of our linear-time algorithm and that of the UF approach.
We plot speed-up ratios, i.e., the ratio of the running time of the UF approach to that of our linear-time
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FIG. 3. The running time of our linear-time algorithms as a function of the size of the signed permutation.

algorithm. Again, the �rst plot addresses only the connected components part of the computation, while
the second captures the complete distance computation.

Since the two approaches use a different amount of memory and give rise to a very different pattern
of addressing (and thus different cache con�icts), the ratios up to permutations of size 100 vary quite a
bit as the size increases—re�ecting a transition from the speed of the L1 cache to that of the L2 cache
at different permutation sizes for the two algorithms. Beyond that point, however, the ratios stabilize and
clearly demonstrate the gain of our algorithm, a gain that increases with increasing permutation size as
well as with increasing evolutionary rate.

7. CONCLUDING REMARKS

We have presented a new, very simple, practical, linear-time algorithm for computing the inversion
distance between two signed permutations, along with a detailed experimental study comparing the running
time of our algorithm with that of Berman and Hannenhalli. Our code is available from the web page
www.cs.unm.edu/�moret/GRAPPA under the terms of the GNU public license (GPL); it has been tested
under Linux (including the parallel version), FreeBSD, Solaris, and Windows NT. This code includes
inversion distance as part of a much larger context, which provides means of reconstructing phylogenies
based on gene order data. We found that using our inversion distance computation in lieu of the surrogate
breakpoint distance (which was used by previous researchers in an attempt to speed up computation
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FIG. 4. The speedup of our linear-time algorithms over the UF approach as a function of the size of the signed
permutation.

[Blanchette et al., 1997; Sankoff and Blanchette, 1998]) only slowed down the reconstruction algorithm
by about 30%, enabling us to extend work on breakpoint analysis (as reported by Cosner et al. [2000] and
by Moret et al. [2001]) to similar work on inversion phylogeny.
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