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A common statistical problem is that of finding the median element in a set of data. This paper presents an
efficient randomized high-level parallel algorithm for finding the median given a set of elements distributed across
a parallel machine. In fact, our algorithm solves the general selection problem that requires the determination of
the element of rankk, for an arbitrarily given integerk.

Our general framework is an SPMD distributed memory programming model that is enhanced by a set of
communication primitives. We use efficient techniques for distributing and coalescing data as well as efficient
combinations of task and data parallelism. The algorithms have been coded in the message passing standard
MPI, and our experimental results from the IBM SP-2 illustrate the scalability and efficiency of our algorithm
and improve upon all the related experimental results known to the author.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnumerical
Algorithms and Problems

General Terms: Selection Algorithm, Randomized Algorithms, Parallel Algorithms, Experimental Parallel Algo-
rithmics

1. INTRODUCTION

Selection and median finding in large data sets are important statistical measures needed by
a variety of high-performance computing applications, for example, image processing for
computer vision and remote sensing, computational aerodynamics and physics simulations,
and data mining of large databases. In these applications, the data set typically is already
evenly distributed across the processing nodes. Because of the large data volume, solving
the problem sequentially surely would overwhelm a single processor.

Given a set of dataX with jXj = n, the selection problem requires the determination
of the element with rankk (that is, thekth smallest element), for an arbitrarily given in-
tegerk. Median finding is a special case of selection withk = n

2. In previous work, we
have designed deterministic and efficient parallel algorithms for the selection problem on
current parallel machines [Bader and J´aJá 1995; Bader and J´aJá 1996; Bader 1996]. In
this paper, we discuss a new UltraFast Randomized algorithm for the selection problem
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which, unlike previous research (for example, [Hao et al. 1992; Krizanc and Narayanan
1992; Rajasekaran and Reif 1993; Berthom´e et al. 1993; Rajasekaran et al. 1994; Ra-
jasekaran 1996; Rajasekaran and Sahni 1997; Sarnath and He 1997; Rajasekaran and Wei
1997; Rajasekaran and Sahni 1998]), is not dependent on network topology or limited to
the PRAM model which does not assign a realistic cost for communication. In addition,
our randomized algorithm improves upon previous implementations on current parallel
platforms, for example, [Al-furiah et al. 1997] implements both our deterministic algo-
rithm and the randomized algorithms due to Rajasekaran et al. (e.g., [Rajasekaran and Reif
1993; Rajasekaran 1996]) on the TMC CM-5.

The main contributions of this paper are

(1) New techniques for speeding the performance of certain randomized algorithms, such
as selection, which are efficient with likely probability.

(2) A new, practical randomized selection algorithm (UltraFast) with significantly im-
proved convergence.

The remainder of this paper is organized as follows. Both our new and Rajasekaran’s
randomized selection algorithms are detailed in Section 2, followed by analysis and ex-
perimental results in Section 3. Additional information on Chernoff Bounds is located in
Appendix A. More extensive statistics from our experiments are reported in [Bader 1999].

2. PARALLEL SELECTION

The selection algorithm for rankk assumes that input dataX of sizen is initially distributed
evenly across thep processors, such that each processor holdsn

p elements. Note that
median finding is a special case of the selection problem wherek is equal todn

2e. The
output, namely the element fromX with rankk, is returned on each processor.

The randomized selection algorithm locates the element of rankk by pruning the set of
candidate elements using the following iterative procedure. Twosplitter elements(k1;k2)
are chosen which partition the input into three groups,G0;G1; and G2, such that each
element inG0 is less thank1, each element inG1 lies in [k1;k2], and each inG2 is greater
thank2. The desire is to have the middle groupG1 much smaller than the outer two groups
(jG1j� jG0j; jG2j) with theconditionthat the selection index lies within this middle group.
The process is repeated iteratively on the group holding the selection index until the size
of the group is “small enough,” whereby the remaining elements are gathered onto a single
processor and the problem is solved sequentially.

The key to this approach is choosing splittersk1 andk2 which minimize the size of the
middle group while maximizing the probability of theconditionthat the selection index lies
within this group. Splitters are chosen from a random sample of the input, by finding a pair
of elements of certain rank in the sample (see Section 3). The algorithm of Rajasekaran
and Reif (see [Rajasekaran and Reif 1993; Rajasekaran 1996]) takes a conservative ap-
proach which guarantees the condition with high probability. We have discovered a more
aggressive technique for pruning the input space by choosing splitters closer together in
the sample while holding the condition with likely probability. In practice, the condition
almost always holds, and in the event of a failure, new splitters are chosen from the sample
with a greater spread of ranks until the condition is satisfied.
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In addition, we improve upon previous algorithms in the following ways.

(1) Stopping Criterion . For utmost performance, current parallel machines typically re-
quire a coarse granularity, the measure of problem size per node, because communi-
cation is typically an order of magnitude slower than local computation. In addition,
machine configurations tend to be small to moderate in terms of number of processors
(p). Thus, a stopping criterion of problem size< p2 is much too fine grained for cur-
rent machines, and we suggest, for instance, a stopping size of max(p2;4096). When
p is small andn= O

�
p2
�
, a second practical reason for increasing the stopping size is

that the sample is very limited and might not yield splitters which further partition the
input.

(2) Aggressive Convergence. As outlined in Section 3, our algorithm converges roughly
twice as fast as the best known previous algorithm.

(3) Algorithmic Reduction . At each iteration, we use “selection” to choose the splitters
instead of sorting, a computationally harder problem.

(4) Communication Aggregation. Similar collective communication steps are merged
into a single operation. For instance, instead of calling theCombine primitive twice
to find the size of groupsG0 andG1 (jG2j can be calculated from this information and
the problem size), we aggregate these operations into a single step.

(5) “Min/Max” Selection Algorithm . When the selection index is relatively close to 1
or n, our approach switches to a faster algorithm for this special case.

Next we outline our new UltraFast Randomized Selection Algorithm, followed by the Fast
Randomized algorithm.

ALENEX00: Second Workshop on Algorithm Engineering and Experiments



118 � D.A. Bader

2.1 UltraFast Randomized Selection Algorithm

An SPMD algorithm on each processorPi :

ALGORITHM 1. UltraFast Randomized Selection Algorithm

Input:
f n g - Total number of elements f p g - Total number of processors, labeled from 0 top�1
f Li g - List of elements on processorPi, wherejLij=

n
p

fC g - A constant� max(p2;4096) f ε g - logn of the sample size (e.g. 0:6)
f ∆� g - selection coefficient (e.g. 1:0) f κ g - selection coefficient multiplier (e.g. 2:25)
f η g - Min/Max constant (e.g. 2p) rank - desired rank among the elements

begin
Step 0.Setni =

n
p .

While (n>C) and(jn� rankj> η)
Step 1.Collect a sampleSi from Li by pickingni

nε

n elements at random onPi.
Step 2.S= Gather(Si ; p).
Setz= TRUE and∆ = ∆�.
While (z� TRUE)

OnP0

Step 3.Selectk1, k2 from Swith ranks
j

ijSj
n �∆

p
jSj
k

and
j

ijSj
n +∆

p
jSj
k
.

Step 4.Broadcastk1 andk2.
Step 5. PartitionLi into < k1 and[k1;k2], and> k2, to give countsless, middle, (and
high). Only save the elements which lie in the middle partition.
Step 6.cless= Combine(less;+); cmid = Combine(middle;+);
Step 7.If (rank2 (cless; cless+cmid] )

n= cmid ; ni = middle ; rank= rank�cless ; z= FALSE
Else

OnP0: ∆ = κ �∆
Endif

Endwhile
Endwhile
If (jn� rankj � η) then

If rank� η then we use the “minimum” approach, otherwise, we use the “maximum” ap-
proach in parentheses, as follows.
Step 8. Sequentially sort ourni elements in nondecreasing (nonincreasing) order using a
modified insertion sort with output sizejLi j = min(rank;ni) (jLij = min(n� rank+1;ni)).
An element that is greater (less) than theLi minimum (maximum) elements is discarded.
Step 9. Gatherthe p sorted subsequences ontoP0.
Step 10. Using ap-way tournament tree of losers [Horowitz and Sahni 1978] constructed
from thep sorted subsequences,rank (n� rank+1) elements are extracted, to find the ele-
mentq with selection indexrank.

Else
Step 11.L = Gather(Li).
Step 12.OnP0

Perform sequential selection to find elementq of rank in L;
Endif
result= Broadcast(q).

end
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2.2 Fast Randomized Selection Algorithm

This algorithm is due to Rajasekaran and Reif (see [Rajasekaran and Reif 1993; Ra-
jasekaran 1996]), and implemented in [Al-furiah et al. 1997].
An SPMD algorithm on each processorPi :

ALGORITHM 2. Fast Randomized Selection Algorithm

Input:
f n g - Total number of elements
f p g - Total number of processors, labeled from 0 top�1
f Li g - List of elements on processorPi, wherejLij=

n
p

f ε g - logn of the sample size (e.g. 0:6)
rank - desired rank among the elements
l = 0 ; r = n

p �1
begin

while (n> p2)

Step 0.Setni = r� l +1
Step 1.Collect a sampleSi from Li [l ; r] by pickingni

nε

n elements at random onPi between
l andr.
Step 2.S= ParallelSort(Si ; p).
OnP0

Step 3.Pickk1, k2 from Swith ranks
l

ijSj
n �

p
jSj lnn

m
and

l
ijSj
n +

p
jSj lnn

m
.

Step 4.Broadcastk1 andk2. Therank to be found will be in[k1;k2] with high proba-
bility.

Step 5.PartitionLi betweenl andr into < k1, [k1;k2], and> k2 to give countsless, middle,
andhigh, and splitterss0 ands1.
Step 6.cmid = Combine(middle;+).
Step 7.cless= Combine(less;+).
Step 8.If (rank2 (cless;cmid] )

n= cmid ; l = s1 ; r = s2 ; rank= rank�cless

Else
If (rank� cless)

r = s1 ; n= cless

Else
n= n� (cless+cmid) ; l = s2 ; rank= rank� (cless+cmid)

Endif
Endif

Endwhile
Step 9.L = Gather(Li [l ; r]).
Step 10.OnP0

Perform sequential selection to find elementq of rank in L,
result= Broadcast(q).

end
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3. ANALYSIS

The following sampling lemma from Rajasekaran (see [Rajasekaran and Reif 1993]) will
be used in the analysis.

Let S= fv1;v2; : : : ;vsg be a random sample from a setX of cardinalityn. Also, let
v01;v

0
2; : : : ;v

0
s be the sorted order of this sample. Ifri is the rank ofk0i in X, the following

lemma provides a high probability confidence interval forri .

LEMMA 1. For everyα, Pr
�
jri � i n

sj>
p

3α np
s

p
lnn

�
< n�α.

Thus, ifk1 andk2 are chosen as the splitters from sample setSby selecting the elements
with rank is

n � d
p

slnn and is
n + d

p
slnn, respectively, andd =

p
4α, then the element

of desired rank will lie in the middle partition(cless ; cless+ cmid] with high probability
(1�n�α).

A tradeoff occurs between the size of the middle partition(r) and the confidence that the
desired element lies within this partition. Note that in the Fast Randomized algorithm, with
d= 1, this probability is 1�n�

1
4 , andr � 8 np

s

p
lnn. Sinces�nε, this can be approximated

by r � 8n1� ε
2
p

lnn.
Suppose now the bound is relaxed with probability no less than 1�n�α = ρ. Thenα =

� log(1�ρ)
logn , and the splittersk1;k2 can be chosen with ranksisn �∆

p
sand is

n +∆
p

s, for ∆ =

2
p� ln(1�ρ) (see Table I). Then the size of the middle partition can be bounded similarly

by r � 16 np
s

p� ln(1�ρ). This can be approximated byr � 16n1� ε
2
p� ln(1�ρ). Thus,

the middle partition size of the UltraFast algorithm is typically smaller than that of the Fast
algorithm, whenever the conditionn> (1�ρ)�4.

∆ Lower bound of capture (ρ, in %)
6.07 99.99
5.26 99.9
4.29 99.0
3.03 90.0
2.54 80.0
2.19 70.0
1.91 60.0
1.50 43.0
1.00 22.1
0.50 6.05

Table I. Lower bound of the capture probability (ρ) that the selection index is in the middle partition, where

ρ = 1�e�
∆2
4 .

A large value forε increases running time since the sample (of sizenε) must be either
sorted (in Fast) or have elements selected from it (in UltraFast). A small value ofε in-
creases the probability that both of the splitters lie on one side of the desired element, thus
causing an unsuccessful iteration. In practice, 0:6 is an appropriate value forε [Al-furiah
et al. 1997].

3.1 Complexity

We use a simple model of parallel computation to analyze the performance of these two
selection algorithms. Current hardware platforms can be viewed as a collection of powerful
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processors connected by a communication network that can be modeled as a complete
graph on which communication is subject to the restrictions imposed by the latency and
the bandwidth properties of the network. We view a parallel algorithm as a sequence of
local computations interleaved with communication steps, and we allow computation and
communication to overlap. We account for communication costs as follows.

The transfer of a block consisting ofmcontiguous words, assuming no congestion, takes
O(τ+σm) time, whereτ is an bound on the latency of the network andσ is the time per
word at which a processor can inject or receive data from the network.

One iteration of the Fast randomized selection algorithm takes O
�

n( j)+(τ+σ) logp
�

time, wheren( j) is the maximum number of elements held by any processor during iteration
j. ¿From the bound on the size of the middle partition, we find a recurrence on the problem
size during iterationi,

n0 = n
ni+1 � 8n0:7

i

p
lnni ;

(1)

which shows a geometric decrease in problem size per iteration, and thus, O(log logn)

iterations are required. Sincen( j) = O
�

n
p

�
, Fast selection requires

O
�

n
p loglogn+(τ+σ) logplog logn

�
(2)

time. (Assuming random data distribution, the running time reduces to O
�

n
p +(τ+σ) logploglogn

�
.)

[Al-furiah et al. 1997]
Each iteration of the UltraFast algorithm is similar to Fast, except sorting is replaced by

sequential selection, which takes linear time [Blum et al. 1973]. Also, the problem size
during iterationi is bounded with the following recurrence,

n0 = n
ni+1 � 16n0:7

i

p� ln(1�ρ) ;
(3)

and similar to the Fast algorithm, UltraFast as well requires O(loglogn) iterations. Thus,
UltraFast randomized selection has a similar complexity, with a worst case running time
given in Eq. (2). As we will show later by empirical results in Table III, though, the
constant associated with the number of iterations is significantly smaller for the UltraFast
algorithm.

3.2 Experimental Data Sets

Empirical results for the selection algorithm use the following five input classes. Given a
problem of sizen andp processors,

—[I] - Identical elementsf0;1; : : : ; n
p �1g on each processor.

—[S] - Sorted elementsf0;1; : : : ;n�1g distributed inp blocks across the processors.
—[R] - Random, uniformly-distributed, elements, withn

p elements per processor.
—[N] - This input is taken from the NAS Parallel Benchmark for Integer Sorting [Bailey

et al. 1994]. Keys are integers in the range[0;219), and each key is the average of four
consecutive uniformly-distributed pseudo-random numbers generated by the following
recurrence:

xk+1 = axk (mod 246)
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wherea = 513 and the seedx0 = 314159265. Thus, the distribution of the key values
is a Gaussian approximation. On ap-processor machine, the firstn

p generated keys are
assigned toP0, the nextnp to P1, and so forth, until each processor hasn

p keys.

—[K] - This input containsnp randomly generated elements per processor, sampled from

the skewed log-normal distribution1, in the range of positive integers[1; INTMAX ] (where
INTMAX, for example, is 231� 1 on a 32-bit machine). We generate each pseudo-
random integer

��
exp

� 1
12 ln INTMAX �normRand(0;1)+ 1

2 ln INTMAX
���

by taking the
largest integer less than or equal to the exponential of a mean 0, standard deviation 1
Gaussian random number (found by adding together twelve uniformly-distributed ran-
dom numbers from the range[�0:5;0:5)) that is first scaled by1

12 ln INTMAX and then
displaced to the right by12 ln INTMAX. For a given INTMAX, the mean and standard
deviation of this skewed distribution are computable2.

3.3 Empirical Results

Results for a previous implementation of the Fast randomized selection algorithm on the
TMC CM-5 parallel machine appear in [Al-furiah et al. 1997]. However, this machine
is no longer available and does not support the current message passing standardMPI .
Therefore, we have recoded this algorithm into MPI.

[R]andom Input [S]orted Input
n p CM-5 SP-2 SP-2 CM-5 SP-2 SP-2

33 66 P2 160 P2SC 33 66 P2 160 P2SC

4 174 68.0 23.5 194 104 25.6
512K 8 105 62.7 17.2 119 79.6 21.7

16 69.5 39.5 10.8 86.7 61.9 15.6
4 591 153 56.6 601 229 67.3

2M 8 318 108 37.6 359 182 48.0
16 193 74.4 23.7 237 136 34.6

Table II. Comparison of the execution time of the Fast Randomized Selection Algorithm on TMC CM-5 [Al-
Furaih 1996; Al-furiah et al. 1997] and IBM SP-2-TN (in milliseconds).

Table II compares the execution time of the Fast Randomized algorithm on both the
CM-5 [Al-Furaih 1996; Al-furiah et al. 1997] and the IBM SP-2. Since selection is
computation-bound, we would expect the performance to be closely related to the node
performance of these two machines. The SP-2-TN 66MHz Power2 (66-P2) processor is
roughly twice as fast as the CM-5 33 MHz RISC processor. As expected, this factor of
two performance improvement is apparent in the execution time comparison for equivalent
machine and problem sizes. In actuality, the SP-2 is more than twice as powerful, since

1The log-normal is a distribution whose natural logarithm is a normal distribution. Given a normal distribution

with meanµand standard deviationσ, the log-normal distribution exp(norm(µ;σ)) has meaneµ+σ2=2 and variance

e2µ+σ2
�

eσ2
�1
�

.
2For our generator, a log-normal distribution with meanµ and standard deviationσ, the scale (112 ln INTMAX) of

the mean 0, s.d. 1, Gaussian random number equals

r
ln
�

µ2+σ2

µ2

�
, and the displacement (1

2 ln INTMAX) equals

1
2 ln

�
µ4

µ2+σ2

�
.
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communication latency and bandwidth are improved roughly by a factor of three. The
newer SP-2-TN 160MHz Power2 SuperChip (160-P2SC) nodes are roughly three times
faster than the 66-P2 nodes, and we see a similar performance improvement.

We conducted experiments with our UltraFast and the known Fast randomized selection
algorithms on an IBM SP-2 (with 160-P2SC nodes) with four, eight, and sixteen proces-
sors, by finding the median of each input in the previous section for various problem sizes
(ranging between 16K to 16M elements)3. A comparison of the empirical execution times
for machine configurations ofp = 4;8; and 16 processors are graphed using log-log plots
in Figures 1-15. In all cases, the UltraFast algorithm is substantially faster than the Fast
randomized selection algorithm, typically by a factor of two. Running time can be charac-
terized mainly byn

p logp and is only slightly dependent on input distribution. In addition,
we have included the performance of several variations as follows:

—FR - the Fast Randomized algorithm (Alg. (2));

—FT - the modified (and improved) Fast Randomized with thewhile loop stopping crite-
rion of n�max(p2;4096) instead ofn� p2;

—R2 - the modified UltraFast Randomized algorithm without the “Min/Max” selection
improvement when(jn� rankj � η); and

—R3 - the UltraFast Randomized algorithm (Alg. (1)).

For p= 8, Table III provides a summary of the number of times each algorithm iterates.
While the Fast algorithm typically iterates in the neighborhood of about 25 times, there are
some cases when it iterates hundreds or even thousands of times. For some other problem
instances, the Fast algorithm may encounter an infinite loop when the number of elements
in a step is larger thanp2, and no choice of splitters further partitions the elements. On the
other hand, the UltraFast algorithm never iterates more then three times. This is due to two
reasons. First, UltraFast converges roughly twice as fast as the Fast algorithm. Second, the
algorithm stops iterating by using a more realistic stopping criterion matched to the coarse
granularity of current parallel machines. In addition, whenp is small andn = O

�
p2
�
,

the Fast algorithm’s sample is very limited and sometimes does not yield splitters which
further partition the input. Thus, in this situation, the Fast algorithm might iterative from
tens to thousands of times before pruning any additional elements from the solution space.

Detailed results from the UltraFast and Fast algorithms (for the[I] , [S], and[R] inputs)
for n= 512K, 1M, 2M, 4M, and 8M, and further statistics from the[N] input, are available
in [Bader 1999].

3Throughout this paper,K andM refer to 210 and 220, respectively.
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n Input Fast Algorithm UltraFast Algorithm

512K I 19 2
S 17 2
R 29 2
N 19 2
K 18 2

1M I 24 2
S 17 2
R 22 2
N 32 2
K 22 2

2M I 26 2
S 22 3
R 21 2
N 38 3
K 20 3

4M I 37 3
S 23 3
R 21 3
N 4095 3
K 90 3

8M I 28 3
S 24 3
R 21 3
N 866 3
K ∞ 3

Table III. Total number of iterations of the Fast and
UltraFast Randomized Selection Algorithms. For this
table, the number of processors usedp= 8.

Execution Time for Randomized Selection Algorithms
on 4 IBM SP-2 processors

Log2 (Problem Size)

14 15 16 17 18 19 20 21 22

T
im

e 
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)
0.001

0.01

0.1

FR [I] 
FT [I] 
R2 [I] 
R3 [I] 

Fig. 1. Empirical Performance of Fast versus Ultra-
Fast Randomized Selection Algorithms on the [I] input
class, withp= 4 nodes of an IBM SP-2-TN. Thex-axis
represents increasing problem sizes.

Execution Time for Randomized Selection Algorithms
on 4 IBM SP-2 processors

Log2 (Problem Size)
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FT [S] 
R2 [S] 
R3 [S] 

Fig. 2. Empirical Performance of Fast versus Ultra-
Fast Randomized Selection Algorithms on the [S] in-
put class, withp= 4 nodes of an IBM SP-2-TN. The
x-axis represents increasing problem sizes.
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Execution Time for Randomized Selection Algorithms
on 4 IBM SP-2 processors

Log2 (Problem Size)
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FT [R] 
R2 [R] 
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Fig. 3. Empirical Performance of Fast versus Ultra-
Fast Randomized Selection Algorithms on the [R] in-
put class, withp = 4 nodes of an IBM SP-2-TN. The
x-axis represents increasing problem sizes.

Execution Time for Randomized Selection Algorithms
on 4 IBM SP-2 processors
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Fig. 4. Empirical Performance of Fast versus Ultra-
Fast Randomized Selection Algorithms on the [N] in-
put class, withp = 4 nodes of an IBM SP-2-TN. The
x-axis represents increasing problem sizes.

Execution Time for Randomized Selection Algorithms
on 4 IBM SP-2 processors
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Fig. 5. Empirical Performance of Fast versus Ultra-
Fast Randomized Selection Algorithms on the [K] in-
put class, withp= 4 nodes of an IBM SP-2-TN. The
x-axis represents increasing problem sizes.

Execution Time for Randomized Selection Algorithms
on 8 IBM SP-2 processors
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Fig. 6. Empirical Performance of Fast versus Ultra-
Fast Randomized Selection Algorithms on the [I] input
class, withp= 8 nodes of an IBM SP-2-TN. Thex-axis
represents increasing problem sizes.
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Execution Time for Randomized Selection Algorithms
on 8 IBM SP-2 processors
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Fig. 7. Empirical Performance of Fast versus Ultra-
Fast Randomized Selection Algorithms on the [S] in-
put class, withp = 8 nodes of an IBM SP-2-TN. The
x-axis represents increasing problem sizes.

Execution Time for Randomized Selection Algorithms
on 8 IBM SP-2 processors
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Fig. 8. Empirical Performance of Fast versus Ultra-
Fast Randomized Selection Algorithms on the [R] in-
put class, withp = 8 nodes of an IBM SP-2-TN. The
x-axis represents increasing problem sizes.

Execution Time for Randomized Selection Algorithms
on 8 IBM SP-2 processors
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Fig. 9. Empirical Performance of Fast versus Ultra-
Fast Randomized Selection Algorithms on the [N] in-
put class, withp= 8 nodes of an IBM SP-2-TN. The
x-axis represents increasing problem sizes.
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Fig. 10. Empirical Performance of Fast versus Ultra-
Fast Randomized Selection Algorithms on the [K] in-
put class, withp= 8 nodes of an IBM SP-2-TN. The
x-axis represents increasing problem sizes.
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Execution Time for Randomized Selection Algorithms
on 16 IBM SP-2 processors
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Fig. 11. Empirical Performance of Fast versus Ultra-
Fast Randomized Selection Algorithms on the [I] input
class, withp= 16 nodes of an IBM SP-2-TN. Thex-
axis represents increasing problem sizes.
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Fig. 12. Empirical Performance of Fast versus Ultra-
Fast Randomized Selection Algorithms on the [S] input
class, withp= 16 nodes of an IBM SP-2-TN. Thex-
axis represents increasing problem sizes.
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Fig. 13. Empirical Performance of Fast versus Ultra-
Fast Randomized Selection Algorithms on the [R] in-
put class, withp= 16 nodes of an IBM SP-2-TN. The
x-axis represents increasing problem sizes.
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Fig. 14. Empirical Performance of Fast versus Ultra-
Fast Randomized Selection Algorithms on the [N] in-
put class, withp= 16 nodes of an IBM SP-2-TN. The
x-axis represents increasing problem sizes.
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Execution Time for Randomized Selection Algorithms
on 16 IBM SP-2 processors
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Fig. 15. Empirical Performance of Fast versus UltraFast Randomized Selection Algorithms on the [K] input class, withp= 16 nodes
of an IBM SP-2-TN. Thex-axis represents increasing problem sizes.

4. FUTURE DIRECTIONS

We are investigating other combinatorial algorithms that may have significant practical improvement by
relaxing the probabilistic bounds, as demonstrated by our UltraFast randomized selection.

In addition, our UltraFast parallel, randomized selection algorithm, here designed and analyzed for a
message-passing platform, would also be suitable for shared-memory multiprocessors (SMP’s) and SMP
Clusters [Bader and J´aJá 1999]. In the SMP UltraFast selection algorithm, each communication step can be
eliminated, simplified, or replaced with a shared-memory primitive. For instance, the SMP algorithm would
be as follows. Each processor collects its portion of the sample from the corresponding block of the input
and writes the sample to a shared-memory array. Thus,Step 2, theGather communication, is eliminated.
After a single processor determines the splittersk1 andk2 from the sample, theBroadcastcommunication
in Step 4simplifies into a memory read by each processor. TheCombine in Step 6may be replaced by
the corresponding shared-memory primitive. TheGather in Step 11can be replaced with a shared-memory
gather. We are currently investigating the performance of this SMP approach.

APPENDIX

A. CHERNOFF BOUNDS

The following inequalities are useful for bounding the tail ends of a binomial distribution with parameters
(n; p). If X is a binomial with parameters(n; p), then the tail distributions, known as Chernoff bounds
[Chernoff 1952], are as follows.

Pr(X � (1� ε)np)� e�
ε2np

2 (4)

Pr(X � (1+ ε)np)� e�
ε2np

3 (5)

for all 0< ε < 1.

ALENEX00: Second Workshop on Algorithm Engineering and Experiments



An Improved Randomized Selection Algorithm With an Experimental Study � 129

REFERENCES

AL-FURAIH, I. S. 1996. Timings of Selection Algorithm. Personal communication.
AL-FURIAH, I., ALURU, S., GOIL, S.,AND RANKA , S. 1997. Practical Algorithms for Selection on Coarse-Grained Parallel

Computers.IEEE Transactions on Parallel and Distributed Systems 8, 8, 813–824.
BADER, D. A. 1996. On the Design and Analysis of Practical Parallel Algorithms for Combinatorial Problems with Applica-

tions to Image Processing. Ph. D. thesis, University of Maryland, College Park, Department of Electrical Engineering.
BADER, D. A. 1999. An Improved Randomized Selection Algorithm With an Experimental Study. Technical report (Septem-

ber), Electrical and Computer Engineering Department, The University of New Mexico, Albuquerque, NM.
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