
Design and Analysis of the Alliance / University of New Mexico Roadrunner
Linux SMP SuperCluster

David A. Bader�

dbader@eece.unm.edu
Arthur B. Maccabey

maccabe@cs.unm.edu
Jason R. Mastalerz

jason@ahpcc.unm.edu

John K. McIver III
jkmciver@ahpcc.unm.edu

Patricia A. Kovatch
pkovatch@ahpcc.unm.edu

Albuquerque High Performance Computing Center
The University of New Mexico

Albuquerque, NM 87131
USA

Abstract

This paper will discuss high performance clustering from
a series of critical topics: architectural design, system soft-
ware infrastructure, and programming environment. This
will be accomplished through an overview of a large scale,
high performance SuperCluster (named Roadrunner) in
production at The University of New Mexico (UNM) Albu-
querque High Performance Computing Center (AHPCC).
This SuperCluster, sponsored by the U.S. National Science
Foundation (NSF) and the National Computational Sci-
ence Alliance (NCSA), is based almost entirely on freely-
available, vendor-independent software. For example, its
operating system (Linux), job scheduler (PBS), compilers
(GNU/EGCS), and parallel programming libraries (MPI).
The Globus toolkit, also available for this platform, al-
lows high performance distributed computing applications
to use geographically distributed resources such as this Su-
perCluster. In addition to describing the design and analy-
sis of the Roadrunner SuperCluster, we provide experimen-
tal analyses from grand challenge applications and future
directions for SuperClusters.

Please seewww.alliance.unm.edu for further in-
formation.

Keywords: Cluster Computing, Message Passing Inter-

�Also affiliated with the Electrical & Computer Engineering Depart-
ment and supported in part by Department of Energy Sandia National Lab-
oratories contract number AX-3006.

yAlso affiliated with the Computer Science Department. This research
was partially supported by the NSF CISE Research Infrastructure award
CDA-9503064 and by Department of Energy Sandia National Laboratories
contract number AP-1739.

zCorresponding author.

face (MPI), Symmetric Multiprocessors (SMP), Communi-
cation Primitives, Experimental Parallel Algorithmics.

1. Introduction

Over the next decade, clusters will span the entire range
of high-performance computing platforms. Instead of be-
ing restricted solely to supercomputers for achieving high-
performance computing, the spectrum of available plat-
forms will spread out to Beowulf-class clusters, to Super-
Clusters, and on to supercomputers. Moving along this
continuum represents increasing computational resources,
which in turn allows the capability for solving larger classes
of applications or instances of problems. Compute-bound
applications on workstations often may take advantage of
the extra horsepower provided by symmetric multiproces-
sors. Applications with even larger computational require-
ments and a high-degree of concurrency may use Beowulf
clusters, that is, clusters that are home-built from mass-
market, commercial off-the-shelf workstations and net-
works, for instance, PC’s interconnected by Fast Ethernet.
A SuperCluster may contain commodity SMP nodes inter-
connected with scalable, low-latency, high-bandwidth net-
works, and is integrated by a system vendor rather than
the computational scientist. Applications with greater com-
plexity, for example, grand challenges from the sciences,
demand scalable systems with high-performance, intercon-
nects, perhaps coupled with terascale I/O subsystems, and
thus, are appropriate for these superclusters. Finally, su-
percomputers, the largest of the clusters, may provide the
ultimate platform for the highest-fidelity models and simu-
lations and data-intensive applications. At each step up this
ladder of cluster architectures, the system cost increases ap-



proximately by an order of magnitude, but having the high-
performance capability to solve the problem of interest may
require an entry point at any of these levels, the Beowulf, or
SuperCluster, or even supercomputer platform.

Cluster computing with Beowulf- or SuperClusters may
be one or two orders of magnitude less expensive than a su-
percomputer yet still provide a cost-effective solution and
capability that was not available on a workstation. But
this cost comparison measures just the basic system price.
What about the applications? As recently as a few years
ago, the lack of a canonical high-performance architectural
paradigm meant that migrating to a new computer system,
even from the same vendor, typically required redesign-
ing applications to efficiently use the high-performance sys-
tem. Thus, the application must be redesigned with parallel
algorithms and libraries that are optimized for each high-
performance system. This process of porting, redesigning,
optimizing, debugging, and analyzing, the application may
in fact be prohibitively expensive, and certainly frustrating
when the process is completed just in time to greet the next
generation system! With the successful standardization of
system-level interfaces, many of these issues no longer hin-
der our expedited use of these new, high-performance clus-
ters.

The U.S. National Science Foundation (NSF) currently
supports two large advanced computing partnerships, Na-
tional Computational Science Alliance (NCSA) based at
The University of Illinois, Urbana-Champaign, and the Na-
tional Partnership for Advanced Computing Infrastructure
(NPACI) at The University of California, San Diego. Tradi-
tionally these centers have purchased large, expensive par-
allel machines such as the SGI Origin and IBM SP-2. Re-
searchers that require large computational resources can re-
quest time on these machines.

The dilemma is that these machines are so heavily uti-
lized that jobs will often sit in the queue for weeks before
they are able to run, and quite understandably, many re-
searchers find this delay unacceptable. It is also the case
that many applications do not require the complex architec-
tural features available on these large, expensive, parallel
machines. For example, the SGI Origin has the ability to
provide non-uniform shared memory, but this feature may
not be required, or worse, adversely affect the performance
of codes that have not been fully tuned. In addition, several
classes of applications tend to be computationally demand-
ing with minimal communication. Examples include Monte
Carlo simulations, computational fluid dynamics problems,
and lattice computation problems which are used in compu-
tational physics.

To address these needs, scientists at The University of
New Mexico and NCSA have established the first NSF-
funded Linux SuperCluster at UNM using PC-class (Intel-
based) hardware, a high-performance interconnection net-

work, and the Linux operating system. This production
cluster costs a fraction of the price of a commercial super-
computer, and performs well for many classes of applica-
tions.

1.1. What is a SuperCluster?

Currently there are many commodity clusters being built
using mass-market commercial “off the shelf” (COTS)
parts. Typically this involves purchasing or ordering the
necessary components such as PC’s with Fast Ethernet
NICs, and a hub or a switch to connect them together. Then
comes the installation of the operating system as well as
the necessary parallel processing software packages. These
types of clusters are often classified as “Beowulf Systems”
[3]. Our SuperCluster design on the other hand follows a
different principle and does not require computational sci-
entists also to be expert computer hobbyists. SuperClus-
ters, while PC-based, are integrated (hardware and soft-
ware) by a vendor (in our case, Alta Technologies) and
may have additional supercomputing-like hardware, such as
a high-performance networks and hardware monitors, that
improves scalability. In this manner, a SuperCluster may
support the scalable execution of a greater number of ap-
plications than a Beowulf-class machine. The Roadrun-
ner SuperCluster arrived as a unit, and came pre-installed
with Linux, a programming environment, and custom disk
cloning software that allows a system administrator simply
to configure a single node, and then clone it to the rest of
the machine. This approach means the system as a whole is
easier to get running initially and maintain into the future.

Figure 1. The Alliance/UNM Roadrunner Su-
perCluster.

2



Figure 2. A Peek Inside the Roadrunner.

The UNM/Alliance Roadrunner SuperCluster (shown in
Figures 1 and 2) is an Alta Technology Corporation 64-node
AltaCluster containing 128 Intel 450 MHz Pentium II pro-
cessors. The SuperCluster runs the 2.2.10 Linux operating
system in SMP mode with communication between nodes
provided via a high-speed Myrinet network (full-duplex 1.2
Gbps) or with Fast Ethernet (100 Mbps). The AltaCluster
is also outfitted with an external monitoring network that
allows supercomputing-like features; individual processor
temperature monitoring, power cycling, or reseting of the
individual nodes. Each node contains components similar
to those in a commodity PC, for instance, a 100 MHz sys-
tem bus, 512KB cache, 512 MB ECC SDRAM, and a 6.4
GB hard drive. However, the nodes do not require video
cards, keyboards, mice, or displays.

The Myrinet topology (see Figure 3) consists of four oc-
tal 8-port SAN switches (M2M-OCT-SW8 Myrinet-SAN),
each with 16 front-ports attached to each of 16 nodes, and
eight (8) SAN back-ports attached to the other switches.
The Fast Ethernet uses a 72-port Foundry switch with Gi-
gabit Ethernet uplinks to the vBNS and Internet.

1.2. Project Goals

The motivation behind Roadrunner is “capability com-
puting,” where users intend to maximize one or more of
the available computational resources and to continuously
execute an application over a long period of time (on the
order of days to weeks). We are attempting to solve grand
challenge class problems that require large amounts of re-
sources and scalable systems unavailable in Beowulf PC
clusters. What the Roadrunner project demonstrates is a
well-packaged, scalable cluster computer system that gives
the best computational power per dollar.

Myrinet Switch 1 Myrinet Switch 2

Myrinet Switch 3Myrinet Switch 4

Figure 3. An example Myrinet topology for 64
hosts using four Octal 8-port SAN switches.

2. Linux Operating System

2.1. Motivation for Linux

Linux was chosen as a base for the SuperCluster for sev-
eral reasons. The scientific community has a history of suc-
cess with freely-available applications and libraries and has
found that development is improved when source code is
openly shared. Application codes are generally more reli-
able because of the multitude of researchers studying, opti-
mizing, and debugging the algorithms and code base. This
is very important in high performance computing. When re-
searchers encounter performance problems in a commercial
computing environment, the vendor must be relied upon to
fix the problem which may impede progress.

Free operating systems have recently matured to the
point where they can be relied upon in a production envi-
ronment. Even traditional HPC vendors like IBM and SGI
are now supporting Linux. We feel that this is clearly the di-
rection in which the world of high performance computing
is moving.

The particular version of Linux we are running on the
SuperCluster is the Redhat Linux distribution version 5.2,
with a custom compiled SMP kernel 2.2.10. It is important
to note that our system would work equally well under an-
other Linux distribution or another free OS altogether such
as FreeBSD or NetBSD.

There are several other reasons for using Linux: low to
no cost, SMP support performs well in practice (continu-
ously improving), and wealth of commercial drivers and ap-
plications that are easily ported or written for Linux. Ease
of development is another very important factor in choosing

3



Linux. Because of the availability of Linux, scientists may
develop algorithms, code, and applications on their own lo-
cally available machines and then run on Roadrunner with
little or no porting effort. Nearly all of the software used
on Roadrunner is freeware making it very easy for users to
setup a similar system for development at their home site.

2.2. Linux Customizations

Although the Roadrunner is based upon the 5.2 release
of Redhat Linux, several customizations were needed for
interoperability with system software as well as increased
performance.

One of Roadrunner’s extra operating system components
is the ‘GM’ Myrinet messaging layer. GM is distributed by
Myricom in either source or binary format. We have used
the binary distribution thus far, and tend to upgrade our GM
fairly soon after each release to gain additional performance
and stability. Myricom releases their binary distributions of
GM for Linux based upon a given kernel revision. This
drives what Linux kernel Roadrunner has installed (2.2.10
at current writing). Since Redhat 5.2 is shipped with kernel
version 2.0.36, we must maintain a custom kernel for Road-
runner. GM is shipped as a module that will run on an SMP
system, so our kernel must be built with support for load-
able modules. The GM driver is then dynamically loaded at
boot time.

We maintain a list of customizations that must be made
to Linux and related system software for it to scale up
to tens, hundreds, or even thousands of nodes. For in-
stance, one of the supported interactive shells on Roadrun-
ner is ‘tcsh ’. Because some parallel jobs generate a long
command-line argument list (for instance, including each
host machine name), we found that jobs were failing due to
“Word too long” messages from the shell. With more than
1010 characters on the command line, the jobs were fail-
ing. This problem was due to a limitation intcsh in which
words could be no longer than 1024 characters. The de-
fine “BUFSIZE” which limits word size was set to 1024 by
default. Our solution was to compile a new shell with the
BUFSIZE increased 4-fold since the machine list for our
full 64 nodes required over 1400 characters.

3. Systems Software

There are a number of core components that we have
identified for running a production SuperCluster like the
Roadrunner. As discussed in previous sections, the first is
a robust UNIX-like operating system. After that the only
add-ons are programs that allow one to use the cluster as a
single, parallel resource. These include MPI libraries, a par-
allel job scheduler, application development software, and
programming environment.

3.1. Message Passing Interface (MPI): MPICH

MPI provides a portable, parallel message-passing inter-
face. On Roadrunner we are using MPICH, a freely avail-
able, portable implementation of the full MPI specifica-
tion developed by Argonne National Labs [8]. We chose
MPICH over the commercially available MPI implementa-
tions for several reasons. MPICH has been very successful,
and is essentially the de-facto standard for freely-available
MPI implementations largely because it is the reference im-
plementation of the MPI standard. Commercial MPI im-
plementations also tend to be operating system dependent.
MPICH on the other hand is available in source code form
and is highly portable to all the popular UNIX operating
systems including Linux.

Two general distributions of MPICH are available on
Roadrunner. First, the standard Argonne release of MPICH
is available for those using the Fast Ethernet interface. Also
available is MPICH over GM which uses the Myrinet inter-
face. MPICH-GM is distributed by Myricom. Within each
of these distributions two builds of MPICH are available
based upon the back-end compilers. One set uses the freely
available GNU project compilers, and the second uses the
commercial Portland Group suite of compilers. Thus, the
user has four flavors of MPICH to choose from on Road-
runner. All MPICH distributions on Roadrunner are config-
ured to use the Secure-Shell (SSH) remote login program
for initial job launch. As we will discuss later, this provides
a more secure alternative to the ‘rsh ’ default without com-
promising performance.

3.2. Parallel Job Scheduling

It is also very helpful in a clustered environment to de-
ploy some type of parallel job scheduling software. Users
running a parallel application know beforehand that there is
a finite amount of resources such as memory and CPU avail-
able for their application, so they naturally want to use all of
these resources. In this capability computing environment,
it is not sufficient to rely solely on a friendly user policy.
Many of the codes on Roadrunner are very time consum-
ing, and the risk of job conflict is therefore great. This risk
is compounded further as the cluster size increases, and the
more users it accommodates. Parallel job scheduling soft-
ware eliminates these types of conflicts and at the same time
enforces the particular site usage policy.

For parallel job scheduling, Roadrunner uses the
Portable Batch System, or PBS, which was developed at
NASA Ames Research Center [9]. PBS is a job sched-
uler that supports management of both interactive and batch
style jobs. The software is configured and compiled using
popular GNU autoconf mechanisms, which makes it quite
portable including to Linux. PBS is freely distributed in

4



source-code form under a software license that permits a
site to use PBS locally, but does not allow one to redistribute
it. PBS has some nice features including built-in support for
MPI, process accounting, and an optional GUI for job sub-
mission, tracking, and administration of jobs.

3.3. Application Development: EGCS and Portland
Group Suite

Lastly, parallel application development requires parallel
compilers and debuggers for clusters. Supported standard
languages on Roadrunner include C, C++, Fortran 77 and
Fortran 90.

Our system uses a mix of compilers. For C, C++, and
Fortran 77, we use EGCS, the experimental version of the
GNU compilers optimized for Intel x86 processors. On top
of these we have the MPI libraries to provide parallelism.
However, applications also may be written in Fortran 90,
and currently there is little free software support for Fortran
90 like there is for the other languages. To address this,
we have installed a suite of commercial high performance
FORTRAN compilers from the Portland Group. This suite
also includes C and C++ compilers and a debugging tool.

4. Usage Policy, Access, & Security

As mentioned previously, system software such as a job
scheduler allows the enforcement of the particular site us-
age policy. This section provides details on how this pol-
icy may be enforced on clusters through systems software.
Scalability issues will also be discussed.

4.1. Access Control Methodology

As with many supercomputing sites, our local usage pol-
icy dictates that only one user (or group) be allowed to use a
particular compute node at a time. Again, for quality of ser-
vice, we do not want to rely only upon a friendly user policy
where users compete unfairly for system resources. Thus,
we need a system where users are unable to circumvent the
job scheduler either maliciously or accidentally. That is,
users should not able to login or use resources on the com-
pute nodes without first being granted an allocation through
PBS. This prevents users from directly launching parallel
programs on the nodes and potentially interfering with other
running jobs.

In its default state, each compute node has a persis-
tent ‘/etc/nologin ’ file in place which disables all
user logins except for the root (administrative) user. Sup-
port for the ‘nologin ’ file is standard under Linux and
many other UNIX flavors. With our implementation, the
‘ /etc/pbsuser ’ file overrides ‘/etc/nologin ’ if it
exists. Thus, any user listed in thepbsuser file on a node

is permitted access to that node. This file is automatically
created when a job is allocated nodes through PBS and then
removed when the job terminates.

4.2. Access Control Implementation

Node access control on a SuperCluster may be enforced
using the job scheduler (PBS), the Secure-Shell (SSH) se-
cure rsh /rlogin replacement, and the ‘masshosts ’
tool.

On Roadrunner, user access to nodes can only take place
through SSH. SSH is configured with a particular option
(‘ --with-nologin-allow ’) that allows it to check an
arbitrary file (/etc/pbsuser in our case) for users who
are allowed to override thenologin file and access the
node.

Thepbsuser file is manipulated by the PBS job sched-
uler. PBS allows the system administrator to create a ‘pro-
logue’ and an ‘epilogue’ script that handle job pre- and
post- processing, respectively. These scripts are run as
root (that is, with full system privileges), must be exe-
cutable, and can be written in the programming language
of choice. Our prologue is responsible for creating an
/etc/pbsuser file on all scheduled nodes containing
the username of the scheduled user. This allows that user
to override/etc/nologin and run commands on those
nodes. Executed when the job terminates, our epilogue
script deletes the/etc/pbsuser file on all scheduled
nodes which locks the user back out.

Masshosts is a freely available Perl script written by John
Mechalas [7] that can be used to execute arbitrary com-
mands on groups of hosts in an efficient and flexible man-
ner. Masshosts is called from both prologue and epilogue
and is responsible for running the remote SSH commands
on the compute nodes to manipulate thepbsuser file. The
advantage of using masshosts rather than a sequential com-
mand loop is speed. The script has an option that allows the
system administrator to specify the number of remote SSH
connections to run in parallel. For example, with masshosts
set to run 16 parallel sessions, it takes under 10 seconds
to finish prologue and epilogue processing on Roadrunner’s
full 64 nodes.

4.3. Thoughts on Future Limitations & Scalability

This access control method has proven effective and re-
liable in our current (64 compute node) environment. It
is also a portable implementation since it uses pre-existing
system software mechanisms and requires no source code
modifications of these programs. However, as the num-
ber of compute nodes grow on a SuperCluster, the ques-
tion of whether the existing implementation will continue
to perform adequately arises. One possible limitation is

5



in the pbsuser file creation/deletion step carried out by
masshosts. With 512 compute nodes for example, the
amount of time needed by masshosts to finish execution of
remote commands on all nodes may well exceed what is
reasonable by user and administrator expectations.

A more scalable solution might be to house thepb-
suser file on a read-write network filesystem that is
shared across all compute nodes rather than on the lo-
cal filesystems of each node. Currently the ‘--with-
nologin-allow ’ SSH option only supports lookups
from a static filename specified at compilation time. How-
ever, since SSH is open-source, it would be feasible to
modify the program to perform nologin-allow lookups on
a shared, network file named dynamically based on a lo-
cal hostname. For example, SSH on node 15 would
look to file ‘/shared/pbsuser-node15 ’, node 422
to ‘/shared/pbsuser-node422 ’, etc. for usernames
that should be granted local access. Then, the PBS prologue
and epilogue scripts could create and delete onepbsuser
file per node on the shared filesystem instead of connecting
to each node with masshosts to accomplish this. This would
undoubtedly provide a faster and more efficient implemen-
tation.

5. Roadrunner on the GRID

5.1. What is a Computational Grid?

A computational grid is a hardware and software infras-
tructure that provides dependable, consistent, pervasive and
inexpensive access to high-end computational capabilities
[6]. This infrastructure is analogous to the electric power
grid; it allows a large-scale sharing of resources through
a common “plug-in” interface with little dependence or
thought as to the supplier of power. Although computers
are faster than ever, more computational power is needed to
solve grand challenge problems. The Grid can help solve
these problems by making significant resources available
at a reasonable cost. In addition, the Grid may connect
geographically distributed resources such as SuperClusters
and supercomputers, scientific instruments, as well as data
repositories, visualization suites, and people.

5.2. Globus & GUSTO Testbed

One mechanism for allowing communication be-
tween the nodes of a computational grid is Globus
(www.globus.org ). The Globus Infrastructure is a
high performance, distributed computing toolkit that allows
ready access to geographically distributed resources as de-
scribed above. The Roadrunner SuperCluster is fully in-
tegrated with Globus and GUSTO (Globus Ubiquitous Su-
percomputing Testbed Organization), and allows scientists

from all over the world to use all of the Globus resources
for computation. GUSTO combines 40 sites with over 2.5
TeraFlops of computing power in the largest demonstration
of a computational grid.

6. Experimental Results & Applications Per-
formance

Next we analyze the system performance of a Super-
Cluster using both low-level benchmarks and application
kernels. Many benchmarks have been run on Roadrun-
ner to test everything from computational power of the
nodes to communication across the interconnection net-
works. The most important aspect of Roadrunner’s perfor-
mance is not the embarrassingly parallel applications, for
instance, Monte Carlo simulations, but those that require
large amounts of computational power and inter-processor
communication. First we provide experimental results from
the communication subsystem, followed by empirical re-
sults for two important grand challenge class applications
for computational physics and 3-dimensional numerical rel-
ativity simulations.

6.1. Various Benchmarks and their Results

6.1.1 Myrinet vs. Ethernet performance comparisons

The time to send and receive a message is directly affected
by how much bandwidth is available at the time of trans-
mission, and by the effectiveness of the routing method. In
this context, we compare Myrinet performance with that of
Fast Ethernet. In order to test Roadrunner’s communication
capabilities, we used a standard ping-pong test for both la-
tency and bandwidth over an increasing, user defined mes-
sage size.

In Figure 4, we see both Fast Ethernet and Myrinet time
performance against application-level messages ranging in
size from zero to one megabyte. Myrinet has a latency of
approximately 28.0 microseconds while Fast Ethernet’s av-
erage is about 178 microseconds as seen in Figure 5. Not
only does Myrinet have an order of magnitude less latency
than Fast Ethernet, but it is continuously faster for all sizes
of packets.

In Figure 4, the time period required to send and receive
a message between two nodes is displayed. Myrinet has bla-
tant repeatability and consistency, combined with excellent
speed (unlike Ethernet’s erratic performance).

In Figure 6, Fast Ethernet and Myrinet bandwidth per-
formance is compared again in message sizes ranging from
zero to one megabyte. Myrinet has a peak achievable band-
width of about 69.1 MB/s while Fast Ethernets’ peak is
around 8.09 MB/s (Fast Ethernet is switched). Unlike Eth-
ernet’s use of the operating system’s TCP stack, Myrinet

6



Time for Large Messages

MPI Message Size (Kilobytes)

0 200 400 600 800 1000 1200

T
im

e 
(m

ill
is

ec
on

ds
)

0

20

40

60

80

100

120

140

Fast Ethernet
Myrinet

Figure 4. Comparison of Fast Ethernet and
Myrinet Performance for Large Messages.

Time for Small Messages

MPI Message Size (Bytes)

0 1024 2048 3072 4096 5120 6144 7168 8192

T
im

e 
(m

ic
ro

se
co

nd
s)

0

200

400

600

800

1000

1200

1400

Fast Ethernet 
Myrinet 

Figure 5. Comparison of Fast Ethernet and
Myrinet Performance for Small Messages.

drivers bypass the operating system and use azero-copy
mechanism that copies a message directly from source to
destination application buffer without the need for unnec-
essary local copying of the message. It is also interesting
to note that Myrinet is using different communication algo-
rithms based on the size of the message being transfered.
This is indicated by the saw tooth markings of the Myrinet
performance curve in Figure 6.

Bandwidth for Large Messages

MPI Message Size (Kilobytes)

0 200 400 600 800 1000 1200

B
an

dw
id

th
 (

M
B

 / 
s)

0

10

20

30

40

50

60

70

Myrinet

Fast Ethernet

Figure 6. Comparison of Fast Ethernet and
Myrinet Bandwidth.

6.1.2 MILC

The MIMD Lattice Computation (MILC) [4] is a body of
high performance research software for modeling SU(3)
and SU(2) lattice gauge theory on several different (MIMD)
parallel computers in current use. The MILC benchmark
problem used in this paper is a conjugate gradient algorithm
for Kogut-Susskind quarks. Note thatL refers to the prob-
lem size, and thatL = 4 means that there is a44 piece of
the domain on each node.

In Figures 7 - 9, this MILC benchmark was run on
two Linux clusters. The Indiana University (IU) Physics
Linux cluster is a Beowulf-class 32-node Fast Ethernet clus-
ter with a single 350 MHz Pentium II processor, 64 MB
RAM and 4.3 GB disk per node. Looking at the single
node benchmarks (see Figure 7), we see that the for small
problem sizes that fit completely or mostly in the cache,
the Roadrunner SuperCluster with its 450 MHz processor
is faster than the 350 MHz system. ForL > 6, however,
memory access becomes a limiting factor, and there is little
performance difference. ForL � 6, the Roadrunner Su-
perCluster achieves greater than 60 MF/node for almost all

7



Figure 7. MILC single node benchmark.

Figure 8. MILC Benchmark with L = 4.

Figure 9. MILC Benchmark with L = 8.

cases. For the IU Beowulf, forL � 8, on up to 32 nodes, the
performance is near 50% of the SuperCluster performance.
As a point of reference forL = 8 on 16 nodes, the Cray
T3E-900 achieves 76 MF/node and on an Origin 2000 (250
MHz) MILC achieves 119 MF/node.

Figure 10. Comparison with additional archi-
tectures is shown below for a L=8 case. Non-
Roadrunner data - courtesy of NCSA NT Clus-
ter Group.

In Figure 10, the MILC benchmark for a fixed problem
size is run on a variety of architectures varying the machine
size. Here, the SuperCluster performs quite well compared
with traditional supercomputers.

6.1.3 CACTUS

CACTUS [1] is a high-performance computing toolkit
that implements a framework for solving three-dimensional

8



computational astrophysics problems on parallel machines.
In this paper we benchmark the CACTUS grand challenge
application using an instance that solves the Bona-Mass hy-
perbolic formulation of the Einstein equations for numerical
relativity calculations.

CACTUS Benchmark Execution Time
on 32 processors

Grid Size

10 20 30 40 50 60

T
im

e 
(s

)

0

2500

5000

7500

10000

12500

15000

17500

20000

NASA Beowulf 
NCSA NT Cluster 
UNM Roadrunner Linux 
SGI Origin 2000 (R12K) 

Figure 11. CACTUS benchmark running time
for various machines.

CACTUS Benchmark Scaling
on 32 processors

Grid Size

10 20 30 40 50 60

S
ca

lin
g 

P
er

ce
nt

ag
e

70

75

80

85

90

95

100

UNM Roadrunner Linux 
NCSA NT Cluster 
SGI Origin 2000 (R12K) 
NASA Beowulf 

Figure 12. CACTUS scalability.

Figure 11 shows the running time for the CACTUS
benchmark for 32 processors as the problem size increases.
As a key, the machines are configured as follows. ‘NASA
Beowulf’ is a 64-node dual PPro 200 MHz, 64MB RAM,
‘NCSA NT Cluster’ runs Microsoft Windows NT with 32
dual PII 333 MHz with 512 MB RAM, and 64 dual PII 300
MHz with 512 MB RAM, ‘SGI Origin 2000’ is the NCSA

Origin 2000 with 32 R12K 300 MHz processors, and ‘RR’
is the Roadrunner SuperCluster. In Figure 12 the scalability
of these machines is compared using the CACTUS bench-
mark and increasing problem sizes. Notice that Roadrunner
contains the best scalability for this problem, more than 99
% as the problem size increases.

7. Future Directions

7.1. Maui Scheduler

PBS is one of the few commodity parallel schedulers
available for use with computational clusters. This made
PBS a natural choice for use in our cluster. However, PBS
does not readily support several key features (e.g., back-
fill scheduling, flexible priority assignments, shortpool poli-
cies, etc.) that we believe are needed for effectively manag-
ing the resources provided by the Roadrunner cluster. To
address these shortcomings, we have undertaken a direct
port of the Maui scheduler to the Linux cluster environment.
This port uses the Wikiman interface provided by the Maui
scheduler and is nearing completion.

7.2. Improved Message Passing Layers: HPVM &
Portals

While the newer implementations of MPICH-GM have
shown significant improvement in message passing perfor-
mance, we will continue to investigate alternative imple-
mentations of MPI on Myrinet. One such implementation is
HPVM, the MPI implementation based on FM (Fast Mes-
sages) being developed by Andrew Chien at UCSD [5]. Be-
cause HPVM is used in the NT clusters at the University of
Illinois, using HPVM on our cluster would enhance applica-
tion portability between the two types of clusters as well as
a more direct comparison of the Linux and NT approaches.
Another implementation that we will evaluate is the Por-
tals communication layer being developed jointly between
the University of New Mexico and Sandia National Labo-
ratories. This communication layer was originally devel-
oped for massively parallel supercomputers (including the
nCUBE, Intel Paragon, and ASCI Red machines) [10] and
is being adapted to the Linux cluster environment. Beyond
the obvious tie to UNM, we are interested in this commu-
nication layer because it is one of the few communication
layers that has been shown to scale to systems with thou-
sands of nodes (the ASCI Red machine at Sandia has over
4,500 nodes).

7.3. Advanced Programming Models

Hardware benchmark results reveal awesome perfor-
mance rates for both SMP nodes and high-performance

9



networks in a SuperCluster; however, few applications on
these hybrid SMP clusters ever reach a fraction of these
peak speeds. While methodologies for symmetric multi-
processors (e.g., OpenMP or POSIX threads) and message-
passing primitives for clusters (e.g., MPI) are well devel-
oped, performance dictates the use of a hybrid solution. In
contrast, our approach called SIMPLE [2], a hybrid, hier-
archical methodology, is a much closer abstraction of the
underlying machine and is ideally suited to SMP clusters.
SIMPLE provides an integrated complexity cost scheme for
SMP clusters that accurately models the hierarchical mem-
ory system and networks, while retaining the benefits of the
RAM model. Namely, our complexity model will be simple
to apply, provide a “rule of thumb” for algorithmic com-
plexity, and aid algorithmic designers in discovering effi-
cient and portable algorithms on clusters.

8. Acknowledgments

We would like to thank Ron Brightwell and Rolf Riesen
(Sandia National Laboratories) and Rod Oldehoeft, Peter
Beckman, and Susan Coghlan (Los Alamos National Lab-
oratory), Steven Gottlieb (Indiana University) and Robert
Sugar (University of California, Santa Barbara) for their
help and comparisons of the MILC code, and Ed Seidel,
Gabrielle Allen, and Oliver Wehrens (Max-Planck-Institut
für Gravitationsphysik and University of Illinois) for the
CACTUS code. We also acknowledge Ken Segura (Uni-
versity of New Mexico) for his help running the Roadrun-
ner SuperCluster. We thank Frank Gilfeather, the execu-
tive director of the High Performance Computing, Educa-
tion, and Research Center, for his generous support of high-
performance computing at The University of New Mexico
and his leadership of the Roadrunner Project.

References

[1] G. Allen, T. Goodale, and E. Seidel. The Cactus Computa-
tional Collaboratory: Enabling Technologies for Relativistic
Astrophysics, and a Toolkit for Solving PDE’s by Commu-
nities in Science and Engineering. InProceedings of the
Seventh IEEE Symposium on the Frontiers of Massively Par-
allel Computation, pages 36–41, Annapolis, MD, February
1999.

[2] D. Bader and J. J´aJá. SIMPLE: A Methodology for Pro-
gramming High Performance Algorithms on Clusters of
Symmetric Multiprocessors (SMPs).Journal of Parallel and
Distributed Computing, 58(1):92–108, 1999.

[3] D. Becker, T. Sterling, D. Savarese, J. Dorband,
U. Ranawak, and C. Packer. Beowulf: A Parallel Worksta-
tion For Scientific Computation. InProceedings of the 1995
International Conference on Parallel Processing, volume 1,
pages 11–14, August 1995.

[4] C. Bernard, T. Blum, A. De, T. DeGrand, C. DeTar, S. Got-
tlieb, A. Krasnitz, L. Kärkkäinen, J. Labrenz, R. Sugar, and
D. Toussaint. Recent Progress on Lattice QCD with MIMD
Parallel Computers. MIMD Lattice Computation (MILC)
Collaboration, A Grand Challenge Application Group.

[5] A. Chien, S. Pakin, M. Lauria, M. Buchanan, K. Hane,
L. Giannini, and J. Prusakova. High Performance Virtual
Machines (HPVM): Clusters with Supercomputing APIs
and Performance. InProceedings of the Eighth SIAM Con-
ference on Parallel Processing for Scientific Computing,
Minneapolis, MN, March 1997.

[6] I. Foster and C. Kesselman, editors.The Grid: Blueprint for
a New Computing Infrastructure. Morgan Kaufmann Pub-
lishers, San Francisco, CA, 1999.

[7] J. Mechalas. The Masshosts Tool.SysAdmin Magazine,
8(3), 1999.

[8] Message Passing Interface Forum. MPI: A Message-Passing
Interface Standard. Technical report, University of Ten-
nessee, Knoxville, TN, June 1995. Version 1.1.

[9] MRJ Inc. The Portable Batch System (PBS). tex-
titpbs.mrj.com.

[10] S. Wheat, A. Maccabe, R. Riesen, D. van Dresser, and
T. Stallcup. PUMA: An Operating System for Massively
Parallel Systems.Scientific Programming, 3:275–288, 1994.

10


