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We describe a methodology for developing high performance programs
running on clusters of SMP nodes. The SMP cluster programming methodology
is based on a small prototype kernel (SIMPLE) of collective communication
primitives that make efficient use of the hybrid shared and message-passing
environment. We illustrate the power of our methodology by presenting
experimental results for sorting integers, two-dimensional fast Fourier trans-
forms (FFT), and constraint-satisfied searching. Our testbed is a cluster of
DEC AlphaServer 21004/275 nodes interconnected by an ATM switch.
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1. PROBLEM OVERVIEW

With the cost of commercial off-the-shelf (COTS) high performance interconnects
falling and the respective performance of microprocessors increasing, workstation
clusters have become an attractive computing platform offering potentially a superior
cost-effective performance [ 27]. Indeed, this trend highly leverages both workstation-
focused technologies, including system software and networking infrastructure, for
example, COTS networks (e.g., Ethernet, Myrinet, FDDI, or ATM). In recent
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years, we have seen the maturing of symmetric multiprocessor (SMP) technology
(for example, hardware support for hierarchical memory management, multi-
threaded operating system kernels, and optimizing compilers) and the heavy
reliance upon SMPs as the work-intensive servers for client/server applications. It
can be argued that (1) many future workstations will be SMPs with more than one
processor and (2) SMP nodes will be the basis of workstation clusters. There are
already several examples of clusters of SMPs, such as clusters of DEC AlphaServer
[17], SGI Challenge/PowerChallenge [ 13], or Sun Ultra HPC machines, and the
IBM SP system with SMP “High” nodes [ 18, 16]; moreover, the Department of
Energy’s Accelerated Strategic Computing Initiative (ASCI) program relies on the
success of computational clusters such as Option White, a 512-node IBM SP-2 with
16-way SMP nodes. With the acceptance of message-passing standards such as
MPI [22], it has become easier to design portable parallel algorithms making use
of these primitives. However, the focus of MPI is a standard for communicating
between shared-nothing processes, and although MPI programs run on clusters of
SMPs, this is not necessarily the optimal methodology for these platforms.

This paper describes a methodology for programming clusters of SMP nodes
(herein referred to as Cosmos®) which aids in the design and implementation of
efficient high performance parallel algorithms. We call this approach SIMPLE,
referring to the joining of the SMP and MPI-like message-passing paradigms and
the simple programming approach (see Fig. 1). Note that our overall algorithmic
style is similar in spirit to the one advocated by the bulk synchronous parallel
(BSP) model [32].

Most popular programming methodologies for Cosmos fall into two categories
[ 15]. The first, distributed shared memory (DSM) systems (for example, TreadMarks
[2] from Rice University, Multigrain Shared Memory (MGS) [34] from MIT, and
Coherent Virtual Machine (CVM) [19] from University of Maryland) provides a
software layer which simulates coherent shared memory between nodes by inter-
nally using messaging to move around specific data or referenced memory pages.
The second, based on message-passing primitives (for example, MPI [ 22]), enforces a
shared-nothing paradigm between tasks, and all communication and coordination
between tasks are performed through the exchange of explicit messages, even between
tasks on a node with physically shared memory. For example, the models assumed
in [ 21, 30] are that each processor in the cluster will be assigned a message-passing
(MPI-level) process, with lower latency communication between processes on the
same SMP node than with internode messages. However, our work differs from
both of these approaches, in that we advocate a hybrid methodology which maps
directly to underlying architectural aspects. As such, we combine shared memory
programming on shared memory nodes with message-passing communication
between these nodes.

Other recent research which utilizes SMP clusters includes KeLP and Globus.
The KeLP library [ 11] improves data parallel language performance by providing
the user with a high-level programming abstraction for block-structured scientific

3 Cosmos (’kéz-mos) noun Greek kosmos, c. 1650: 1. an orderly harmonious systematic universe; 2. a
complex orderly self-inclusive system; 3. cluster of shared memory nodes.
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calculations. KeLP contains runtime support for nonuniform domain decomposi-
tion partitioning, taking into consideration the two levels (intra- and inter-node) of
memory hierarchy. The Globus toolkit [ 12] contains the tools necessary to inter-
connect heterogeneous systems (including SMP nodes) in a wide-area network,
allowing message-passing and shared memory programs to take advantage of these
distributed resources.

The main results of this paper are

1. A programming methodology for Cosmos which is both efficient and
portable. This methodology provides a path for optimizing message-passing
algorithms to clusters of SMPs.

2. A small communication kernel for clusters of SMPs which has superior
performance, compared to known MPI implementations.

3. High performance algorithms based on our methodology for sorting
integers, constraint-satisfied searching, and computing the two-dimensional FFT.

Experimental results are provided from implementations on a cluster of DEC
AlphaServer 2100 4/275 nodes, each with a DEC (OC-3c¢) 155.52 Mbps PCI card
connected to a DEC Gigaswitch/ATM switch, and using MPI (e.g., LAM 6.1 [25],
MPICH 1.1.0 [14], or CHIMP 2.1.1c [1]) and POSIX threads (pthreads), a
standard (IEEE Std. 1003.1c [28, 31]) portable threads library (e.g., DECthreads
[10] or freely available pthreads implementations [29, 23]). Alternatively, the
OpenMP shared memory programming API [26] may be used to provide shared
memory support. Each DEC AlphaServer 2100 4/275 node is a symmetric multipro-
cessor with four 64-bit, dual-issue, DEC 21064A (EV4) Alpha RISC processors
clocked at 275 MHz. Each Alpha chip has two separate data and instruction on-chip
caches. Both on-chip caches are 16 KB, but the instruction cache is direct mapped,
while the data cache is two-way set-associative. In addition, each CPU has a 4 MB
backup (L2) cache [17]. All CPUs communicate via a 128-bit system bus which
connects the four CPU modules to a shared memory up to 2 GB in size [17].

2. THE SIMPLE COMPUTATIONAL MODEL

We use a simple paradigm for designing efficient and portable parallel algorithms.
First we will describe characteristics of our target parallel machine architecture.
Second, we describe a set of efficient SIMPLE communication and computation
primitives which are intended as user level directives.

Our architecture (shown in Fig. 2) consists of a collection of SMP nodes inter-
connected by a communication network that can be modeled as a complete graph
on which communication is subject to the restrictions imposed by the latency and
the bandwidth properties of the network. Each SMP node contains several identical
processors, each typically with its own on-chip cache (L1) and a larger off-chip
cache (L2), which can be tightly integrated into the memory system to provide fast
memory accesses and cache coherence. Each of the r symmetric processors on an
SMP node has uniform access to a shared memory and other resources such as the
network interface. In practice, SMP configurations range between 2 and 36 CPUs
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attached to a shared bus and main memory. In our methodology, only the CPUs
from a certain node have access to that node’s configuration. In this manner, there
is no restriction that all nodes must be identical, and certainly CosMos can be
constructed from SMP nodes of different sizes. Thus, the number of threads on a
specific remote node is not globally available. Because of this, our methodology
supports only node-oriented communication, meaning we restrict communication
such that, given any source node s and destination node d, with s+#d, only one
thread on node s can send (receive) a message to (from) node 4 at any given time.
We will show later that no performance loss will be incurred by this restriction.

2.1. Communication Primitives

The communication primitives are grouped into three modules: internode com-
munication library (ICL), SMP NobpEg, and SIMPLE. ICL communication primitives
handle internode communication, SMP NoODE primitives aid shared-memory node
algorithms, and SIMPLE primitives combine a SMP Nobpe with ICL on SMP
clusters.

Internode communication (ICL) uses message passing across the network and
can use any of the vendor-supplied or freely available thread-safe implementations
of MPIL. Our ICL library is based upon a reliable, application-layer send and
receive primitive, as well as a send-and-receive primitive which handles the
exchanging of messages between sets of nodes where each participating node is the
source and destination of one message. The library also provides a barrier opera-
tion based upon the send and receive which halts the execution at each node
until all nodes check into the barrier, at which time, the nodes may continue execu-
tion. In addition, ICL includes collective communication primitives, for example,
scan, reduce, broadcast, allreduce, alltoall, alltoallv, gather,
and scatter.

Processors on an SMP node communicate via coordinated accesses to shared
memory. The SMP NoDE Library contains important primitives for an SMP node:
barrier, replicate, broadcast, scan, reduce, and allreduce, whereby
on a single node, barrier synchronizes the threads, replicate uniquely copies
a data buffer for each processor, scan (reduce) performs a prefix (reduction)
operation with a binary associative operator (for example, addition, multiplication,
maximum, minimum, bitwise-AND, and bitwise-OR) with one datum per thread,
and allreduce replicates the result from reduce. For certain SMP algorithms,
it may not be necessary to replicate data, but to share a read-only buffer for a given
step. A broadcast SMP primitive supplies each processor with the address of the
shared buffer by replicating the memory address.

Finally, the SIMPLE communication library, built on top of ICL and SMP NoDE,
includes the primitives for the SIMPLE model: barrier, scan, reduce, broad-
cast, allreduce, alltoall, alltoallv, gather, and scatter. These
hierarchical layers of our communication libraries are pictured in Fig. 3. The SMP
Nobpk, ICL, and SIMPLE libraries are implemented at a high-level, completely in user
space. Because no kernel modification is required, these libraries easily port to new
platforms.



BADER AND JAJA

98

‘ugisop A1eIqry ¢ DI

"90kds 198N ur A[eje[duwroo sayerodo ATINIS
ey} 9JON ‘SOlLIRI]I[ I19sn piepue)s pue ‘Surssed
oBessowl ‘JNS ‘ATINIS SS000% UBD SPOD I9S()

9

aoedg uray jousayf

20edg Jos|
u\ n saLrIqI] Jos) A

SPEeI X150d (1dW 39) 101
A |£rigryopoN A_EW_ Buisseq oFessop

H1dNES

weidoid 1as)

SSLIRICI] UOIJRITUNIIOD HTINIS
pue ‘Suissed sfessowr ‘JINS JO AyoIRISTl

aeorday ADYPUIS A2 pussS
Joureg
o0pay ey
eag
Axe1qr1 9poN dJINS AIeIQr] UONBOTUNIIO.) SPOWIAU]

912G “IIRD) ‘Al[EONTY ‘I[EONIY

30NPAI[TY ‘ISEOPEOIY ‘20NPAY ‘URIS ‘Iotireqg

Areiqr uonestunwwo) FIANWIS




SIMPLE: METHODS FOR SMP CLUSTERS 99

As mentioned previously, the number of threads per node can vary, along with
machine size. Thus, each thread has a small set of context information (Table 1)
which holds such parameters as the number of threads on the given node, the
number of nodes in the machine, the rank of that node in the machine, and the
rank of the thread, both on the node and across the machine.

Because the design of the communication libraries is modular, it is easy to experi-
ment with different implementations. For example, the ICL module can make use
of any of the freely available or vendor-supplied thread-safe implementations of
MPI, or a small communication kernel which provides the necessary message-
passing primitives. Similarly, the SMP NODE primitives can be replaced by vendor-
supplied SMP implementations. We ran a simple experiment whereby a message is
sent between two DEC AlphaServer 2100 nodes, using the Digital Gigaswitch/ATM
and OC-3c¢ adapter cards, which have a theoretical peak bandwidth rating of 155.52
Mbps. Using the ICL, we find a point-to-point communication latency of 150 us
and achieve an application-level bandwidth of 132 Mbps between a pair of nodes.
For more details, see [5].

Now that the basics of the communication system and node library have been
presented, we are ready to describe an example of a SIMPLE communication
primitive.

THE alltoall PrRIMITIVE. One of the most important collective communica-
tion events is the alltoall (or transpose) primitive which transmits regular-
sized blocks of data between each pair of nodes. More formally, given a collection
of p nodes, each with an m element-sending buffer, where p divides m, the
alltoall operation consists of each node i sending its jth block of m/p data
elements to node j, where node j stores the data from i in the ith block of its
receiving buffer, for all (0<i, j<p—1).

To implement this algorithm efficiently on a Cosmos [5, 6], we use multiple
threads (r <p) per node. Trivially, one thread on node i concurrently can perform
a local memory copy of the data block i, while the remaining p —1 internode
communications are partitioned in a straightforward manner to the remaining
threads. Each thread has the information necessary to calculate its subset of loop
indices, and thus, this loop partitioning step requires no synchronization overheads.

In Fig. 4, we compare the performance of three alltoall primitives, using
the MPI, ICL, and SmMPLE communication libraries on four and eight DEC

TABLE 1

The Local Context Parameters Available to Each StMpLE Thread

Parameter Description
NODES =p Total number of nodes in the cluster.
MYNODE My node rank, from 0 to NODES — 1.
THREADS =r Total number of threads on my node.
MYTHREAD The rank of my thread on this node, from 0 to THREADS — 1.
TID Total number of threads in the cluster.

ID My thread rank, with respect to the cluster, from 0 to TID — 1.
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Performance of the "Alltoall* (transpose) Communication Primitive
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AlphaServer 2100 4/275 nodes. In all cases, the SIMPLE primitive is faster than an
implementation using only message passing, such as ICL or MPL* Now, with only
a single network interface per node, why would one expect a performance improve-
ment by using multiple threads? Our algorithm exploits two main sources of
parallelism. The first is task level concurrency exhibited by one thread performing
the local memory copy while other threads utilizing the network. The second form
of parallelism is less obvious, but nonetheless an important observation. Unlike
clusters of workstations where each network interface is closely coupled to a single
processor’s communication stream, on an SMP node, the operating system is itself
capable of internal parallelism (via multithreaded kernel routines) and can more
efficiently pipeline requests between the processors and the network interface.

2.2. Computation Primitives

We first discuss basic support for data parallelism, that is, “parallel do” concurrent
execution of loops across processors on one or more nodes. Next we describe the
control primitives which restrict (or contextualize) thread execution, for example,
to some subset of threads or nodes. Last, we cover a few shared memory manage-
ment directives which make it easier for the user to develop portable shared
memory code by standardizing the interface for allocating and deallocating shared
memory locations.

Data parallel. The SiMPLE methodology contains several basic “pardo” direc-
tives for executing loops concurrently on one or more SMP nodes, provided that
no dependencies exist in the loop. Typically, this is useful when an independent
operation is to be applied to every location in an array, for example, in the element-
wise addition of two arrays. Pardo implicitly partitions the loop to the threads
without the need for coordinating overheads such as synchronization or communi-
cation between processors. By default, pardo uses block partitioning of the loop
assignment values to the threads, which typically results in better cache utilization
due to the array locations on the left-hand side of the assignment being owned by
local caches more often than not. However, SIMPLE explicitly provides both block
and cyclic partitioning interfaces for the pardo directive.

Control. SIMPLE control primitives restrict which threads can participate in the
context. For instance, control may be given to a single thread on each node in a
cluster, all threads on one node, or a particular thread on a particular node.

Memory management. Finally, shared memory management is the third category
of SIMPLE computation primitives. Two directives are provided (node_malloc and
node_free) that, respectively, dynamically allocate a shared structure and release
this memory back to the heap.

Thus, we have described the fundamental elements of the SiMPLE methodology
and can now present a high-level approach for designing algorithms on CosMOS.

“The MPI alltoall implementation switches from a small-sized input algorithm to one for larger
inputs during this experiment. Thus, the performance graph reflects a discontinuity in execution time
with respect to the critical input size.



102 BADER AND JAJA

3. SIMPLE ALGORITHMIC DESIGN

Programming model. The user writes an algorithm for an arbitrary cluster size
p and SMP size r (where each node can assign possibly different values to r at
runtime), using the parameters from Table 1. SIMPLE expects a standard main
function (called SIMPLE _main( )) that, to the user’s view, is immediately up and
running on each thread in the CosMos. SIMPLE also supplies the program’s command
line arguments.

A possible approach. The latency for message passing is an order of magnitude
higher than accessing local memory. Thus, the most costly operation in a SIMPLE
algorithm is internode communication, and algorithmic design must attempt to
minimize the communication costs between the nodes. Since this is a similar optimi-
zation criterion used when designing efficient message-passing algorithms [3], it is
beneficial to first design an efficient message-passing algorithm on a Cosmos, and
then to adapt the algorithm for the SIMPLE paradigm.

Given an efficient message-passing algorithm, an incremental process can be used
to design an efficient SIMPLE algorithm. The computational work assigned to each
node is mapped into an efficient SMP algorithm. For example, independent opera-
tions such as those arising in functional parallelism (for example, independent I/O
and computational tasks, or the local memory copy in the SmMPLE alltoall
primitive presented in the previous section) or loop parallelism typically can be
threaded. For functional parallelism, this means that each thread acts as a func-
tional process for that task, and for loop parallelism, each thread computes its
portion of the computation concurrently. Note that we may need to apply loop
transformations to reduce data dependencies between the threads. Thread synchro-
nization is a costly operation when implemented in software and, when possible,
should be avoided.

4. SIMPLE ALGORITHM EXAMPLES

The following section demonstrates examples of SIMPLE algorithms for a variety
of problems, including complex communication routines, integer sorting, scientific
computing with the fast Fourier transform, and constrained searching. The reader
is referred to [5, 6] for detailed algorithmic descriptions and analyses.

Permutation. As mentioned briefly in the previous section, more complex com-
munication algorithms can be developed from the primitives described in Section 2.
For example, the SIMPLE alltoallv communication primitive handles the case
where the messages for each destination are already collected into a contiguous
block of an array holding all of the messages, and the messages to be received
from the other nodes likewise will appear in contiguous blocks in another array.
Suppose, instead, that each node contains a set of messages, each message holding
a destination tag, such that no node sends or receives more than s messages [32].
The resulting A-relation personalized communication [4] is a useful communication
routine used in a variety of parallel algorithms. Each node determines the number
of its keys to be sent to every other node, announces these counts to the destination
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nodes, rearranges the input elements into a single send buffer such that all keys for
the destination node j are in contiguous memory and appear before the keys for
node j+ 1, routes the all-to-all communication event, and finally, unpacks each
received element into the correct destination position. The permutation algorithm
minimizes the number of communication steps, which is optimal on our Cosmos
testbed where communication is expensive, compared with local computation.

Radix sort. Consider the problem of sorting n integers spread evenly across a
cluster of p shared-memory r-way SMP nodes, where n > p?. Fast integer sorting is
crucial for solving problems in many domains, and as such, is used as a kernel in
several parallel benchmarks such as NAS® [7] and SPLASH [33]. We present an
efficient sorting algorithm based on our StMPLE methodology. We chose the technique
of radix sort since it is well known for sequential programming, but efficient methods
for solving this problem on clusters of SMPs are not. The SIMPLE approach for
radix sort is similar to our efficient message-passing algorithm [4], except when
applicable, shared memory computation replaces sequential node work, and com-
munication uses the improved SIMPLE communication library [5, 6].

Consider the problem of sorting »n integer keys in the range [0, M — 1] (and
M =2%) that are distributed equally in the shared memories of a p-node cluster of
r-way SMPs. Radix sort decomposes each key into groups of p-bit digits for a
suitably chosen p and sorts the keys by applying a Counting Sort routine on each
of the p-bit digits, beginning with the digit containing the least significant bit posi-
tions [20]. Let R=2”>=p. Assume (w.l.o.g.) that the number of nodes is a power
of two, say p =2k, and hence R/p is an integer =2”"¥>1. We need b/p passes of
Counting Sort; each pass works on p-bit digits of the input keys, starting from the
least significant digit of p bits to the most significant digit.

The performance of the SmMPLE radix sort algorithm on a Cosmos of DEC
AlphaServer nodes is given in the left plate of Fig. 5. In this experiment, we use four
user threads per node and vary both the problem size and the number of nodes
used. Here, the SIMPLE code shows linear speedups when using multiple nodes of a
Cosmos platform.

As we claim in the introduction, software-distributed shared memory and message-
passing algorithms are not optimal for CosMos platforms. For instance, we ported
an efficient SMP radix sort code into a software-distributed shared memory pack-
age called Coherent Virtual Machine (CVM, version 0.1) [ 19] which is an exten-
sion of the commercial TreadMarks [ 2] DSM implementation. The performance of
this DSM radix sort is given in Fig. 5. In addition, we took an efficient message-
passing code for radix sort (the reader is referred to [4, 5] for a complete analysis
of the algorithm and its performance) which performs very well on an IBM SP-2.

The right plate of Fig. 5 provides a summary of the performance of the SIMPLE
methodology with DSM/CVM or MPI/MPICH on our testbed. In this experiment,
we compare the performance of a SIMPLE radix sort code using eight 4-way SMP
nodes with that of both DSM/CVM and MPI/MPICH code for various cases, such
as using one or multiple threads of execution per node. In all situations on the

5 Note that the NAS IS benchmark requires that the integers be ranked and not necessarily placed in
sorted order.
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cluster of SMPs testbed, the SiMPLE algorithm substantially outperforms that of
both the distributed shared memory and the message-passing implementations.

Two-dimensional fast Fourier transform. Fourier transforms are at the heart of
many computations in medical image analysis, computational fluid dynamics,
speech recognition, seismic analysis, image and signal processing, and detecting
surface defects in manufacturing. The straightforward and well-known FFT takes a
one-dimensional signal and transforms it into a one-dimensional vector of frequency
components. However, when the input is a two-dimensional digital image, a corre-
sponding two-dimensional FFT (2D-FFT) can be used similarly to transform the
image into its two-dimensional frequency image. A 2D-FFT computation can be
reduced to 1D-FFT’s by first performing 1D-FFT’s across the rows, followed by
ID-FFT’s down the columns, similar to the FFT algorithms in [8,9] which
perform an all-to-all transpose of the data between two phases of local computa-
tion. In fact, a k-dimensional transform can be formed by performing & (k—1)-
dimensional FFTs along each axis.

Assume that an n x n image is originally partitioned in strips among the p nodes
such that each node originally holds n/p rows of the image.

ALGORITHM 1 (SIMPLE two-dimensional FFT algorithm).

Step 1. Each node performs n/p n-point 1D FFTs across the rows of its local
image strip.
Step 2. Locally rearrange the image such that each n/p x n/p block of the image

is transposed. Thus, for each block, each column of data is gathered into contiguous
memory in preparation for the following step.

Step 3. Apply the alltoall primitive to transpose the blocks.

Step 4. Locally rearrange the data such that each node holds n/p columns of
the image in contiguous memory.

Step 5. Each node performs n/p n-point 1D FFTs down the columns® of its
local image strip.

Note that the 2D FFT algorithm above (Algorithm 1) is valid for both the
message-passing and SIMPLE paradigms. The SIMPLE optimization assigns n/rp rows
and columns in Steps 1 and 5, respectively, to each thread, and substitutes the
SIMPLE alltoall primitive in Step 3. (Note that the local rearrangements in
Steps 2 and 4 similarly can be optimized for shared memory threads on each node.)
The SiMPLE implementation resulted in superior performance in all test cases as
reported in [5].

CONSTRAINED SEARCH ALGORITHM (The n-queens problem). A classic puzzle
used in benchmarking and performance analysis is the n-queens problem. Here, the
objective is to report the number of ways to place n queens on an n x n chessboard
such that none of the queens can attack each other. For those readers unfamiliar
with the game of chess, this restricts the placement of the queens such that no two

%In fact, the image strip is transposed, so the 1D FFTs are performed physically across rows of
memory.
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queens share the same rank (or row), column, or diagonal. Since there are ,.C, =
n?!/n!(n® —n)! ways to place n queens on an n xn board, a brute force algorithm
which checks each of these candidate solutions is infeasible. If we limit the search
space to include just those candidates which have exactly one queen per rank, then
we reduce the search space to n” (or n! for one queen per rank and column)
possible candidates, which is still too large. Therefore, the most desirable search
method aggressively eliminates sets of candidate solutions which do not satisfy the
constraints. Even with the best search method, solving the n-queens problem has
exponential complexity in the problem size.

Our algorithm uses a tree-based backtracking approach where queens are placed
one by one on each rank until all » queens are placed. If a constraint is not met,
or a solution is found, the last queen placed on the board is removed and re-placed
in the next column position. This is equivalent to a depth-first search with pruning
of branches where the constraints are not met. Note that we are not taking into
consideration the special topological properties and symmetries of the chessboard,
for example rotating known solutions by 90°, 180°, and 270°, to discover similar
solutions, or reflecting solutions about the horizontal, vertical, or diagonal axes.

A parallel n-queens constraint-satisfaction search algorithm with p processors
uses a distributed search tree approach as follows. First, the algorithm enumerates
a set of independent search-tree seed nodes and partitions these to the processors.
Suppose we generate all possible queen placements on the first & ranks of an nxn
chessboard. There will be n* of these placements, uniquely encoded into the integers
from 0 to n* — 1. These n* partial placements then can be partitioned randomly and
evenly among the processors, checked for validity, and used as a root node for a
sequential depth-first search of the remaining n — k queen positions from that start-
ing point. This SIMPLE algorithm scales linearly with the total number of processors
used and compares favorably with the standard netlib [24] “queens” sequential
benchmark results for n=14, 15, and 16.

REFERENCES

1. R. Alasdair, A. Bruce, J. G. Mills, and A. G. Smith, “CHIMP/MPI User Guide,” Edinburgh Parallel
Computing Centre, The University of Edinburgh, 1.2 edition, June 1994. [ http://www.epcc.ed.ac.uk/
epcc-projects/ CHIMP/]

2. C. Amza, A. L. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony, W. Yu, and W. Zwaenepoel,
TreadMarks: Shared memory computing on networks of workstations, JEEE Computer 29, 2 (1996),
18-28.

3. D. A. Bader, “On the Design and Analysis of Practical Parallel Algorithms for Combinatorial
Problems with Applications to Image Processing,” Ph.D. thesis, University of Maryland, College
Park, Department of Electrical Engineering, April 1996.

4. D. A. Bader, D. R. Helman, and J. JaJa, Practical parallel algorithms for personalized communica-
tion and integer sorting, ACM J. Exp. Algorithmics 1, 3 (1996), 1-42. [ http://www.jea.acm.org/1996/
BaderPersonalized/ ]

5. D. A. Bader and J. JaJa, “SIMPLE: A Methodology for Programming High Performance Algo-
rithms on Clusters of Symmetric Multiprocessors (SMPs),” Technical Report CS-TR-3798 and
UMIACS-TR-97-48, Institute for Advanced Computer Studies (UMIACS), University of Maryland,
College Park, MD, May 1997. [ http://www.umiacs.umd.edu/research/EXPAR]

6. D. A. Bader and J. JaJa, SIMPLE: Efficient communication algorithms for clusters of symmetric
multiprocesors (SMPs) with applications, in preparation, 1999.



13.

14.

15.

16.

17.

18.
19.
20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

SIMPLE: METHODS FOR SMP CLUSTERS 107

D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, L. Dagum, R. Fatoohi, S. Fineberg,
P. Frederickson, T. Lasinski, R. Schreiber, H. Simon, V. Venkatakrishnan, and S. Weeratunga, “The
NAS Parallel Benchmarks,” Technical Report RNR-94-007, Numerical Aerodynamic Simulation
Facility, NASA Ames Research Center, Moffett Field, CA, March 1994.

. W. P. Brown, “Parallel Computation of Atmospheric Propagation,” Technical report, Maui High

Performance Computing Center and Phillips Laboratory, Kihei, Maui, HI, 1995.

. D. E. Culler, R. M. Karp, D. A. Patterson, A. Sahay, K. E. Schauser, E. Santos, R. Subramonian,

and T. von Eicken, LogP: Towards a realistic model of parallel computation, in “Fourth ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming, May 1993.”

. Digital Equipment Corp., “Guide to DECthreads,” Maynard, MA, July 1994.
. S. J. Fink and S. B. Baden, Runtime support for multi-tier programming of block-structured applica-

tions on SMP clusters, in “Lecture Notes in Computer Science: Proceedings of the 1997 International
Scientific Computing in Object-Oriented Parallel Environments Conference (ISCOPE ’97), Marina
del Rey, CA, Dec. 1997” (Y. Ishikawa et al., Ed.), Vol. 1343, pp. 1-8, Springer-Verlag, Berlin.

. 1. Foster and C. Kesselman, Globus: A metacomputing infrastructure toolkit, Internat. J. Supercomput.

Appl. 11, 2 (1997), 115-128.

M. Galles and E. Williams, “Performance Optimizations, Implementation, and Verification of the
SGI Challenge Multiprocessor,” Technical report, Silicon Graphics Computer Systems, Mountain
View, CA, May 1994. [ ftp://ftp.sgi.com/sgi/whitepaper/challenge_paper.ps.Z ]

W. Gropp, E. Lusk, N. Doss, and A. Skjellum, “A High-Performance, Portable Implementation of
the MPI Message Passing Interface Standard,” Technical report, Argonne National Laboratory,
Argonne, 1L, 1996. [ http://www.mcs.anl.gov/mpi/mpich/]

W. W. Gropp and E. L. Lusk, A taxonomy of programming models for symmetric multiprocessors
and SMP clusters, in “Proceedings of 1995 Programming Models for Massively Parallel Computers,
Berlin, Germany, October 1995,” pp. 2-7.

C. Harris, “Node Selection for the IBM RS/6000 SP System,” Version 2.1, IBM RS/6000 Division,
November 1996.

F. M. Hayes, Design of the AlphaServer Multiprocessor Server Systems, Digital Technical J. 6, 3
(Summer 1994), 8-19.

IBM Corporation, RS/6000 SP System, RS/6000 Division, 1997.

P. Keleher, “CVM: The Coherent Virtual Machine,” 0.1 Ed., University of Maryland, November 1996.
D. E. Knuth, “The Art of Computer Programming: Sorting and Searching,” Vol. 3, Addison-Wesley,
Reading, MA, 1973.

S. S. Lumetta, A. M. Mainwaring, and D. E. Culler, Multi-Protocol Active Messages on a Cluster
of SMP’s, in “Proceedings of Supercomputing *97,” San Jose, CA, November 1997.

Message Passing Interface Forum. MPI: A Message-Passing Interface Standard, Technical report,
University of Tennessee, Knoxville, TN, June 1995, Version 1.1.

F. Miiller, A Library Implementation of POSIX Threads under UNIX, in “Proceedings of the 1993
Winter USENIX Conference,” pp.29-41, San Diego, CA, January 1993. [http://www.informatik.
hu-berlin.de/ ~ mueller/projects.html ]

Netlib Repository for mathematical software, papers, and databases, University of Tennessee and
Oak Ridge National Laboratory. [ http://www.netlib.org/]

Ohio Supercomputer Center, “LAM/MPI Parallel Computing,” Ohio State University, Columbus,
OH, 1995. [http://www.mpi.nd.edu/lam/]

OpenMP Architecture Review Board, “OpenMP: A Proposed Industry Standard API for Shared
Memory Programming, October 1997.” [ http://www.openmp.org/ ]

G. F. Pfister, “In Search of Clusters,” Prentice-Hall, Englewood Cliffs, NJ, 1995.

Portable Applications Standards Committee of the IEEE, “Information Technology—Portable
Operating System Interface (POSIX)—Part 1. System Application Program Interface (API),”
1996-07-12 ed., 1996. [ ISO/IEC 9945-1, ANSI/IEEE Std. 1003.1]

C. Provenzano, “Proven Pthreads,” WWW page, 1995. [http://www.mit.edu/people/proven/
pthreads.html]

W. Saphir, A. Woo, and M. Yarrow, “The NAS Parallel Benchmarks 2.1 Results,” Report NAS-96-
010, Numerical Aerodynamic Simulation Facility, NASA Ames Research Center, Moffett Field, CA,
August 1996.



108 BADER AND JAJA

31. Sun Microsystems, Inc., “POSIX Threads,” WWW page, 1995.

32. L. G. Valiant, A bridging model for parallel computation, Comm. ACM 33, 8 (1990), 103-111.

33. S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, The SPLASH-2 programs: Characterization
and methodological considerations, in “Proceedings of the 22nd Annual International Symposium
on Computer Architecture, June 1995,” pp. 24-36.

34. D. Yeung, J. Kubiatowicz, and A. Agarwal, MGS: A multigrain shared memory system, in
“Proceedings of the 23rd Annual International Symposium on Computer Architecture, Philadelphia,
PA, May 1996.”



	1. PROBLEM OVERVIEW 
	FIG. 1 

	2. THE SIMPLE  COMPUTATIONAL MODEL 
	FIG. 2 
	FIG. 3 
	TABLE 1 
	FIG. 4 

	3. SIMPLE ALGORITHMIC DESIGN 
	4. SIMPLE ALGORTIHM EXAMPLES 
	FIG. 5 

	REFERENCES 

