
File: DISTL2 146201 . By:CV . Date:23:07:98 . Time:13:31 LOP8M. V8.B. Page 01:01
Codes: 4476 Signs: 2392 . Length: 58 pic 2 pts, 245 mm

Journal of Parallel and Distributed Computing�1462

journal of parallel and distributed computing 52, 1�23 (1998)

A Randomized Parallel Sorting Algorithm with
an Experimental Study

David R. Helman*

Institute for Advanced Computer Studies 6 Department of Electrical Engineering,
University of Maryland, College Park, Maryland 20742

David A. Bader-

Department of Electrical and Computer Engineering, University of New Mexico,
Albuquerque, New Mexico 87131

and

Joseph Ja� Ja� �

Institute for Advanced Computer Studies 6 Department of Electrical Engineering,
University of Maryland, College Park, Maryland 20742

Received September 3, 1996; revised April 20, 1998; accepted May 11, 1998

Previous schemes for sorting on general-purpose parallel machines have
had to choose between poor load balancing and irregular communication or
multiple rounds of all-to-all personalized communication. In this paper, we
introduce a novel variation on sample sort which uses only two rounds of
regular all-to-all personalized communication in a scheme that yields very
good load balancing with virtually no overhead. Moreover, unlike previous
variations, our algorithm efficiently handles the presence of duplicate values
without the overhead of tagging each element with a unique identifier. This
algorithm was implemented in Split-C and run on a variety of platforms,
including the Thinking Machines CM-5, the IBM SP-2, and the Cray
Research T3D. We ran our code using widely different benchmarks to
examine the dependence of our algorithm on the input distribution. Our
experimental results illustrate the efficiency and scalability of our algorithm
across different platforms. In fact, it seems to outperform all similar algo-
rithms known to the authors on these platforms, and its performance is

article no. PC981462

1 0743-7315�98 �25.00
Copyright � 1998 by Academic Press

All rights of reproduction in any form reserved.

* Supported in part by NSF Grant CCR-9627210. E-mail: helman�umiacs.umd.edu .
- The support by NSF CISE Postdoctoral Research Associate in Experimental Computer Science

96-25668 and NASA Graduate Student Researcher Fellowship NGT-50951 is gratefully acknowledged.
This work was performed in part at the Institute for Advanced Computer Studies, University of
Maryland, College Park. E-mail: dbader�eece.unm.edu.

� Supported in part by NSF Grant CCR-9627210 and NSF HPCC�GCAG Grant BIR-9318183.
E-mail: joseph�umiacs.umd.edu.

File: DISTL2 146202 . By:CV . Date:23:07:98 . Time:13:31 LOP8M. V8.B. Page 01:01
Codes: 3829 Signs: 3325 . Length: 52 pic 10 pts, 222 mm

invariant over the set of input distributions unlike previous efficient algo-
rithms. Our results also compare favorably with those reported for the
simpler ranking problem posed by the NAS Integer Sorting (IS) Benchmark.
� 1998 Academic Press, Inc.

Key Words : parallel algorithms; generalized sorting; integer sorting, sample sort,
parallel performance.

1. INTRODUCTION

Sorting is arguably the most studied problem in computer science, both because
of its intrinsic theoretical importance and its use in so many applications. Its signifi-
cant requirements for interprocessor communication bandwidth and the irregular
communication patterns that are typically generated have earned its inclusion in
several parallel benchmarks such as NAS [6] and SPLASH [32]. Moreover, its
practical importance has motivated the publication of a number of empirical studies
seeking to identify the most efficient sorting routines. Yet, parallel sorting strategies
have still generally fallen into one of two groups, each with its respective disadvan-
tages. The first group, using the classification of Li and Sevcik [21], is the single-
step algorithms, so named because data is moved exactly once between processors.
Examples of this include sample sort [19, 9], parallel sorting by regular sampling
[29, 22], and parallel sorting by overpartitioning [21]. The price paid by these
single-step algorithms is an irregular communication scheme and difficulty with
load balancing. The other group of sorting algorithms is the multi-step algorithms,
which include bitonic sort [8], column sort [20], rotate sort [23], hyperquicksort
[26], flashsort [27], B-flashsort [18], smoothsort [25], and Tridgell and Brent's
sort [30]. Generally speaking, these algorithms accept multiple rounds of communi-
cation in return for better load balancing and, in some cases, regular communication.

In this paper, we present a novel variation on the sample sort algorithm which
addresses the limitations of previous implementations. We exchange the single step
of irregular communication for two steps of regular communication. In return, we
reduce the problem of poor load balancing because we are able to sustain a very
high oversampling ratio at virtually no cost. Second, we efficiently accommodate
the presence of duplicates without the overhead of tagging each element, and we
obtain predictable, regular communication requirements which are essentially
invariant with respect to the input distribution. Utilizing regular communication
has become more important with the advent of message passing standards, such as
MPI [24], which seek to guarantee the availability of very efficient (often machine
specific) implementations of certain basic collective communication routines.

Our algorithm was implemented in a high-level language and run on a variety of
platforms, including the Thinking Machines CM-5, the IBM SP-2, and the Cray
Research T3D. We ran our code using a variety of benchmarks that we identified
to examine the dependence of our algorithm on the input distribution. Our
experimental results are consistent with the theoretical analysis and illustrate the
scalability and efficiency of our algorithm across different platforms. In fact, it
seems to outperform all similar algorithms known to the authors on these platforms,

2 HELMAN, BADER, AND JA� JA�

File: DISTL2 146203 . By:CV . Date:23:07:98 . Time:13:31 LOP8M. V8.B. Page 01:01
Codes: 3818 Signs: 3355 . Length: 52 pic 10 pts, 222 mm

and its performance is indifferent to the set of input distributions unlike previous
efficient algorithms.

The high-level language used in our studies is Split-C [13], an extension of C
for distributed memory machines. The algorithm makes use of MPI-like com-
munication primitives but does not make any assumptions as to how these
primitives are actually implemented. The basic data transport is a read or write
operation. The remote read and write typically have both blocking and non-block-
ing versions. Also, when reading or writing more than a single element, bulk data
transports are provided with corresponding bulk�read and bulk�write primitives.
Our collective communication primitives, described in detail in [4], are similar to
those of the MPI [24], the IBM POWERparallel [7], and the Cray MPP systems
[12] and, for example, include the following: transpose, bcast, gather, and scatter.
Brief descriptions of these are as follows. The transpose primitive is an all-to-all per-
sonalized communication in which each processor has to send a unique block of
data to every processor, and all the blocks are of the same size. The bcast primitive
is used to copy a block of data from a single source to all the other processors. The
primitives gather and scatter are companion primitives. Scatter divides a single
array residing on a processor into equal-sized blocks, each of which is distributed
to a unique processor, and gather coalesces these blocks back into a single array at
a particular processor. See [3�5] for algorithmic details, performance analyses, and
empirical results for these communication primitives.

The organization of this paper is as follows. Section 2 presents our computation
model for analyzing parallel algorithms. Section 3 describes in detail our improved
sample sort algorithm. Finally, Section 4 describes our data sets and the experimen-
tal performance of our sorting algorithm.

2. THE PARALLEL COMPUTATION MODEL

We use a simple model to analyze the performance of our parallel algorithms.
Our model is based on the fact that current hardware platforms can be viewed as
a collection of powerful processors connected by a communication network that
can be modeled as a complete graph on which communication is subject to the
restrictions imposed by the latency and the bandwidth properties of the network.
We view a parallel algorithm as a sequence of local computations interleaved with
communication steps, where we allow computation and communication to overlap.
We account for communication costs as follows.

Assuming no congestion, the transfer of a block consisting of m contiguous words
between two processors takes ({+_m) time, where { is the latency of the network
and _ is the time per word at which a processor can inject or receive data from the
network. Note that the bandwidth per processor is inversely proportional to _. We
assume that the bisection bandwidth is sufficiently high to support block permuta-
tion routing among the p processors at the rate of 1�_. In particular, for any subset
of q processors, a block permutation among the q processors takes ({+_m) time,
where m is the size of the largest block.

Using this cost model, we can evaluate the communication time Tcomm of an
algorithm as a function of the input size n, the number of processors p, and the

3RANDOMIZED PARALLEL SORTING ALGORITHM

File: DISTL2 146204 . By:CV . Date:23:07:98 . Time:13:31 LOP8M. V8.B. Page 01:01
Codes: 3923 Signs: 3459 . Length: 52 pic 10 pts, 222 mm

parameters { and _. The coefficient of { gives the total number of times collective
communication primitives are used, and the coefficient of _ gives the maximum
total amount of data exchanged between a processor and the remaining processors.
This communication model is close to a number of similar models (e.g., [15, 31, 1])
that have recently appeared in the literature and seems to be well-suited for design-
ing parallel algorithms on current high performance platforms.

We define the computation time Tcomp as the maximum time it takes a processor
to perform all the local computation steps. In general, the overall performance
Tcomp+Tcomm involves a tradeoff between Tcomp and Tcomm . In many cases, it is
possible to minimize both Tcomp and Tcomm simultaneously, and sorting is such a case.

3. A NEW SAMPLE SORT ALGORITHM

Consider the problem of sorting n elements equally distributed among p pro-
cessors, where we assume without loss of generality that p divides n evenly. The
idea behind sample sort is to find a set of p&1 splitters to partition the n input
elements into p groups indexed from 1 up to p such that every element in the i th
group is less than or equal to each of the elements in the (i+1)th group, for
1�i�p&1. Then the task of sorting each of the p groups can be turned over to
the correspondingly indexed processor, after which the n elements will be arranged
in sorted order. The efficiency of this algorithm obviously depends on how evenly
we divide the input, and this in turn depends on how well we choose the splitters.
One way to choose the splitters is by randomly sampling the input elements at each
processor��hence the name sample sort.

Previous versions of sample sort [19, 9, 16, 14] have randomly chosen s samples
from the n�p elements at each processor, routed these ps samples to a single pro-
cessor, sorted them at that processor, and then selected every sth element as a split-
ter. Each processor Pi then performs a binary search on these splitters for each of
its input values and then uses the results to route the values to the appropriate
destination, after which local sorting is done to complete the sorting process. The
first difficulty with this approach is the work involved in gathering and sorting the
samples. A larger value of s results in better load balancing, but it also increases the
overhead. The second difficulty is that no matter how the routing is scheduled,
there exist inputs that give rise to large variations in the number of elements
destined for different processors, and this in turn results in an inefficient use of the
communication bandwidth. Moreover, such an irregular communication scheme
cannot take advantage of the regular communication primitives proposed under the
MPI standard [24]. The final difficulty with the original approach is that duplicate
values are accommodated by tagging each item with a unique value [9]. This, of
course, doubles the cost of both memory access and interprocessor communication.

In our solution, we incur no overhead in obtaining n�p2 samples from each pro-
cessor and in sorting these samples to identify the splitters. Because of this very high
oversampling, we are able to replace the irregular routing with exactly two calls to
our transpose primitive, and, in addition, we are able to efficiently accommodate the
presence of duplicates without resorting to tagging. The pseudocode for our algo-
rithm is as follows:

4 HELMAN, BADER, AND JA� JA�

File: DISTL2 146205 . By:CV . Date:23:07:98 . Time:13:31 LOP8M. V8.B. Page 01:01
Codes: 3452 Signs: 2750 . Length: 52 pic 10 pts, 222 mm

v Step (1). Each processor Pi (1�i�p) randomly assigns each of its n�p
elements to one of p buckets. With high probability, no bucket will receive more
than c1 (n�p2) elements, where c1 is a constant to be defined later.

v Step (2). Each processor Pi routes the contents of bucket j to processor Pj ,
for (1�i, j�p). Since with high probability no bucket will receive more than
c1 (n�p2) elements, this is equivalent to performing a transpose operation with block
size c1 (n�p2).

v Step (3). Each processor Pi sorts at most (:1 (n�p)�c1 (n�p)) values
received in Step (2) using an appropriate sequential sorting algorithm. For integers
we use the radix sort algorithm, whereas for floating point numbers we use the
merge sort algorithm.

v Step (4). From its sorted list of (;(n�p)�c1 (n�p)) elements, processor P1

selects each (j;(n�p2))th element as Splitter[j], for (1� j�p&1). By default,
Splitter[p] is the largest value allowed by the data type used. Additionally, for
each Splitter[j], binary search is used to determine the values FracL [j] and
FracR [j], which are respectively the fractions of the total number of elements at
processor P1 with the same value as Splitter[j&1] and Splitter[j] which also lie
between index ((j&1);(n�p2)+1) and index (j;(n�p2)), inclusively.

v Step (5). Processor P1 broadcasts the Splitter, FracL , and FracR arrays to
the other p&1 processors.

v Step (6). Each processor Pi uses binary search on its sorted local array to
define for each of the p splitters a subsequence Sj . The subsequence associated with
Splitter[j] contains all those values which are greater than Splitter[j&1] and
less than Splitter[j], as well as FracL[j] and FracR [j] of the total number of
elements in the local array with the same value as Splitter[j&1] and Splitter[j],
respectively.

v Step (7). Each processor Pi routes the subsequence associated with
Splitter[j] to processor Pj , for (1�i, j�p). Since with high probability no
sequence will contain more than c2 (n�p2) elements, where c2 is a constant to be
defined later, this is equivalent to performing a transpose operation with block size
c2 (n�p2).

v Step (8). Each processor Pi merges the p sorted subsequences received in
Step (7) to produce the i th column of the sorted array. Note that, with high prob-
ability, no processor has received more than :2 (n�p) elements, where :2 is a con-
stant to be defined later.

We can establish the complexity of this algorithm with high probability��that is
with probability�(1&n&=) for some positive constant =. But before doing this, we
need to establish the results of the following lemmas.

Lemma 1. At the completion of Step (1), the number of elements in each bucket
is at most c1 (n�p2) with high probability, for any c1�2 and p2�n�(3 ln n).

5RANDOMIZED PARALLEL SORTING ALGORITHM

File: DISTL2 146206 . By:CV . Date:23:07:98 . Time:13:31 LOP8M. V8.B. Page 01:01
Codes: 3047 Signs: 1897 . Length: 52 pic 10 pts, 222 mm

Proof. The probability that exactly c1 (n�p2) elements are placed in a particular
bucket in Step (1) is given by the binomial distribution

b(s; r, q)=\r
s+ qs (1&q)r&s, (1)

where s=c1 (n�p2), r=n�p, and q=1�p. Using the following Chernoff bound [11]
for estimating the tail of a binomial distribution

:
s�(1+=)rq

b(s; r, q)�e&(=2rq)�3, (2)

the probability that a particular bucket will contain at least c1 (n�p2) elements can
be bounded by

e&(c1&1)2 (n�3p2). (3)

Hence, the probability that any of the p2 buckets contains at least c1 (n�p2) elements
can be bounded by

p2e&(c1&1)2 (n�3p2) (4)

and Lemma 1 follows. K

Lemma 2. At the completion of Step (2), the total number of elements received by
processor P1 , which comprise the set of samples from which the splitters are chosen,
is at most ;(n�p) with high probability, for any ;�1 and p2�n�(3 ln n).

Proof. The probability that processor P1 receives exactly ;(n�p) elements is
given by the binomial distribution b(;(n�p); n, 1�p). Using the Chernoff bound for
estimating the tail of a binomial distribution, the probability that processor P1

receives at least ;(n�p) elements can be bounded by e&(;&1)2 (n�3p) and Lemma 2
follows. K

Lemma 3. For each Splitter[j], where (1� j�p), let SEj and SS j be respectively
the sets of input elements and samples that are both equal in value to Splitter[j], and
let |SSj |�*j (n�p2). Then, with high probability, no SE j will contain more than
Mj (n�p) elements, where

Mj=
(6* j+1)+- 12*j+1

6
. (5)

Proof. The set of input elements SEj = [xj1
, xj2

, ..., xjl
] can have more than

Mj (n�p) members only if *j (n�p2) or less members are selected to be samples from
the set SE$ j = [xj1

, xj2
, ..., xj(Mj (n�p))

], which is the set composed of the first M j (n�p)
members in SEj . However, since each element of SE$j is independently chosen to be
a sample with probability 1�p, the probability of this event occurring is given by

:
s�*j (n�p)

b \s; Mj
n
p

,
1
p+ . (6)

6 HELMAN, BADER, AND JA� JA�

File: DISTL2 146207 . By:CV . Date:23:07:98 . Time:13:31 LOP8M. V8.B. Page 01:01
Codes: 3035 Signs: 1874 . Length: 52 pic 10 pts, 222 mm

Using the following ``Chernoff'' type bound [17] for estimating the head of a bino-
mial distribution

:
s�=rq

b(s; r, q)�e&(1&=)2 (rq�2), (7)

where s�*j (n�p2), r=Mj (n�p), and q=1�p, it follows that the probability that a set
SEj among the p sets of input elements has more than Mj (n�p) members is bounded
by

:
p&1

i=0

e&(1&*j �Mj)
2 Mjn�2p2

. (8)

Using the fact that p2�n�(3 ln n), it is easy to show that the above sum can be
bounded by n&=, for some =>0 and

Mj=
(6* j+1)+- 12*j+1

6
.

The bound of Lemma 3 will also hold if we include the subsets of elements and
samples whose values fall strictly between two consecutive splitters. K

Lemma 4. At the completion of Step (7), the number of elements received by each
processor is at most :2 (n�p) with high probability, for any :2�2.62 (:2�1.77
without duplicates) and p2�n�(3 ln n).

Proof. Let Q be the set of input elements to be sorted by our algorithm, let R
be the set of samples of Step (4) at processor P1 with cardinality ;(n�p), and let S
be the subset of R associated with Splitter[j], which we define to be the samples
in R with indices ((j&1)(;(n�p2))+1) through (j;(n�p2)), inclusively. Let Q1 (n�p),
R1 (n�p2), and S1 (n�p2) be respectively the number of elements in Q, R, and S with
value equal to Splitter[j&1], let Q2 (n�p), R2 (n�p2), and S2 (n�p2) be respectively
the number of elements in Q, R, and S with values greater than Splitter[j&1] but
less than Splitter[j], and let Q3 (n�p), R3 (n�p2), and S3 (n�p2) be respectively the
number of elements in Q, R, and S with value equal to Splitter[j].

According to Step (6) of our algorithm, processor Pj will receive

((FracL[j]_Q1)+Q2+(FracR [j]_Q3))
n
p

=\S1

R1

Q1+Q2+
S3

R3

Q3+ n
p

(10)

elements. To compute the upper bound :2 (n�p) on this expression, we first use
Lemma 3 to bound each Qi (n�p), giving us

\S1

R1 \
(6R1+1)+- 12R1+1

6 ++\(6S2+1)+- 12S2+1
6 +

+
S3

R3 \
(6R3+1)+- 12R3+1

6 ++ n
p

. (11)

7RANDOMIZED PARALLEL SORTING ALGORITHM

File: DISTL2 146208 . By:CV . Date:23:07:98 . Time:13:31 LOP8M. V8.B. Page 01:01
Codes: 3354 Signs: 2078 . Length: 52 pic 10 pts, 222 mm

Rearranging this expression, we get

\S1 \1+
1

6R1

+� 1
3R1

+
1

36R2
1++\(6S2+1)+- 12S2+1

6 +
+S3 \1+

1
6R3

+� 1
3R3

+
1

36R2
3++

n
p

. (12)

Clearly, this expression is maximized for R1=S1 and R3=S3 . Substituting these
values and rearranging once again, we get

\\(6S1+1)+- 12S1+1
6 ++\(6S2+1)+- 12S2+1

6 +
+\(6S3+1)+- 12S3+1

6 ++ n
p

. (13)

Since S1+S2+S3=;, this expression is maximized for S1=S2=S3=;�3. Since
Lemma 2 guarantees that with high probability ;�1, Lemma 4 follows with high
probability for :2�2.62. Alternatively, if there are no duplicates, we can show that
the bound follows with high probability for :2�1.77. K

Lemma 5. If the set of input elements is arbitrarily partitioned into at most 2p
subsets, each of size Xi (n�p) (1�i�2p), with high probability at the conclusion of
Step (2) no processor will receive more than Yi (n�p2) elements from any particular
subset, for Yi�(Xi+- Xi) and p2�n�(3 ln n).

Proof. The probability that exactly Yi (n�p2) elements are sent to a particular
processor by the conclusion of Step (2) is given by the binomial distribution
b(Yi (n�p2); Xi (n�p), 1�p). Using the Chernoff bound for estimating the tail of a
binomial distribution, the probability that from M possible subsets any processor
will receive at least Yi (n�p2) elements can be bounded by

:
M

i=1

pe&(1&Yi �Xi)
2 Xin�3p2

(14)

and Lemma 5 follows for M�2p. K

Lemma 6. The number of elements exchanged by any two processors in Step (7)
is at most c2 (n�p2) with high probability, for any c2�5.42 (c2�3.10 without
duplicates) and p2�n�(3 ln n).

Proof. Let U be the set of input elements to be sorted by our algorithm, let V
be the set of elements held by intermediate processor Pi after Step (2), and let W
be the set of elements held by destination processor Pj after Step (7). Let U1 (n�p),
V1 (n�p2), and W1 (n�p) be respectively the number of elements in U, V, and W with
values equal to Splitter[j&1], let U2 (n�p), V2 (n�p2), and W2 (n�p) be respectively
the number of elements in U, V, and W with values greater than Splitter[j&1] but
less than Splitter[j], and let U3 (n�p), V3 (n�p2), and W3 (n�p) be respectively the

8 HELMAN, BADER, AND JA� JA�

File: DISTL2 146209 . By:CV . Date:23:07:98 . Time:13:31 LOP8M. V8.B. Page 01:01
Codes: 3253 Signs: 1974 . Length: 52 pic 10 pts, 222 mm

number of elements in U, V, and W with values equal to Splitter[j]. According to
Step (6) of our algorithm, intermediate processor Pi will send

((FracL [j]_V1)+V2+(FracR [j]_V3))
n
p2 (15)

elements to processor Pj . To compute the upper bound c2 (n�p2) on this expression,
we first use Lemma 5 to bound each Vk , giving us:

((FracL [j]_(U1+- U1))+(U2+- U2)+(FracR [j]_(U3+- U3)))
n
p2 . (16)

Notice that since destination processor Pj receives respectively FracL [j] and
FracR [j] of the elements at each intermediate processor with values equal
to Splitter[j&1] and Splitter[j], it follows that W1=FracL [j]_U1 and
W3=FracR[j]_U3 . Hence, we can rewrite the expression above as

\W1

U1

(U1+- U1)+(U2+- U2)+
W3

U3

(U3+- U3)+ n
p2 (17)

Rearranging this expression, we get

\W1 \1+� 1
U1++(U2+- U2)+W3 \1+� 1

U3 ++
n
p2 . (18)

Clearly, this expression is maximized for U1=W1 and U3=W3 . Substituting these
values and rearranging, we get

(W1+- W1 +W2+- W2 +W3+- W3)
n
p2 . (19)

Since W1+W2+W3=:2 , this expression is maximized for W1=W2=W3=:2 �3.
Since Lemma 4 guarantees that with high probability :2�2.62, Lemma 6 follows
with high probability for c2�5.24. Alternatively, if there are no duplicates, we can
show that the bound follows with high probability for c2�3.10. K

With these bounds on the values of c1 , :2 , and c2 , the analysis of our sample sort
algorithm is as follows. Steps (1), (3), (4), (6), and (8) involve no communication
and are dominated by the cost of the sequential sorting in Step (3) and the merging
in Step (8). Sorting integers using radix sort requires O(n�p) time, whereas sorting
floating point numbers using merge sort requires O(n�p log(n�p)) time. Step (8)
requires O(n�p log p) time if we merge the sorted subsequences in a binary tree
fashion. Steps (2), (5), and (7) call the communication primitives transpose, bcast,
and transpose, respectively. The analysis of these primitives in [4] shows that
with high probability these three steps require Tcomm (n, p)�({+2(n�p2)(p&1)_),

9RANDOMIZED PARALLEL SORTING ALGORITHM

File: DISTL2 146210 . By:CV . Date:23:07:98 . Time:13:31 LOP8M. V8.B. Page 01:01
Codes: 3143 Signs: 2323 . Length: 52 pic 10 pts, 222 mm

Tcomm (n, p)�({+2(p&1)_), and Tcomm (n, p)�({+5.24(n�p2)(p&1)_), respec-
tively. Hence, with high probability, the overall complexity of our sample sort algo-
rithm is given (for floating point numbers) by

T(n, p)=Tcomp (n, p)+Tcomm (n, p)

=O \ n
p

log n+{+
n
p

_+ (20)

for p2<n�(3 ln n).
Clearly, our algorithm is asymptotically optimal with very small coefficients. But

a theoretical comparison of our running time with previous sorting algorithms is
difficult, since there is no consensus on how to model the cost of the irregular com-
munication used by the most efficient algorithms. Hence, it is very important to
perform an empirical evaluation of an algorithm using a wide variety of
benchmarks, as we will do next.

4. PERFORMANCE EVALUATION

Our sample sort algorithm was implemented using Split-C [13] and run on a
variety of machines and processors, including the Cray Research T3D, the IBM
SP-2-WN, and the Thinking Machines CM-5. For every platform, we tested our
code on eight different benchmarks, each of which had both a 32-bit integer version
(64-bit on the Cray T3D) and a 64-bit double precision floating point number
(double) version.

4.1. Sorting Benchmarks

Our eight sorting benchmarks are defined as follows, in which n and p are
assumed for simplicity to be powers of two and MAXD , the maximum value
allowed for doubles, is approximately 1.8_10308.

1. Uniform [U], a uniformly distributed random input, obtained by calling the
C library random number generator random(). This function, which returns integers
in the range 0 to (231�1), is seeded by each processor Pi with the value (21+1001i).
For the double data type, we ``normalize'' the integer benchmark values by first sub-
tracting the value 230 and then scaling the result by (2&30_MAXD).

2. Gaussian [G], a Gaussian distributed random input, approximated by
adding four calls to random() and then dividing the result by four. For the double
data type, we normalize the integer benchmark values in the manner described for
[U].

3. Zero [Z], a zero entropy input, created by setting every value to a
constant such as zero.

4. Bucket Sorted [B], an input that is sorted into p buckets, obtained by set-
ting the first n�p2 elements at each processor to be random numbers between 0 and
(231�p&1), the second n�p2 elements at each processor to be random numbers

10 HELMAN, BADER, AND JA� JA�

File: DISTL2 146211 . By:CV . Date:23:07:98 . Time:13:31 LOP8M. V8.B. Page 01:01
Codes: 3687 Signs: 3198 . Length: 52 pic 10 pts, 222 mm

between 231�p and (232�p&1), and so forth. For the double data type, we normalize
the integer benchmark values in the manner described for [U].

5. g-Group [g-G], an input created by first dividing the processors into
groups of consecutive processors of size g, where g can be any integer which parti-
tions p evenly. If we index these groups in consecutive order from 1 up to p�g, then
for group j we set the first n�pg elements to be random numbers between
((((j&1)g+p�2&1) mod p)+1)231�p and (((((j&1)g+p�2) mod p)+1)231�p&1),
the second n�pg elements at each processor to be random numbers between
((((j&1)g+p�2) mod p)+1)231�p and (((((j&1)g+p�2+1) mod p)+1)231�p&1),
and so forth. For the double data type, we normalize the integer benchmark values
in the manner described for [U].

6. Staggered [S], created as follows: if the processor index i is less than or
equal to p�2, then we set all n�p elements at that processor to be random numbers
between ((2i&1)231�p) and ((2i)(231�p&1)). Otherwise, we set all n�p elements to
be random numbers between ((2i& p&2)231�p) and ((2i& p&1)231�p&1). For the
double data type, we normalize the integer benchmark values in the manner
described for [U].

7. Deterministic Duplicates [DD], an input of duplicates in which we set all
n�p elements at each of the first p�2 processors to be log n, all n�p elements at each
of the next p�4 processors to be log(n�2), and so forth. At processor Pp , we set the
first n�2p elements to be log(n�p), the next n�4p elements to be log(n�2p), and so
forth.

8. Randomized Duplicates [RD], an input of duplicates in which each pro-
cessor fills an array T with some constant number range (range is 32 for our work)
of random values between 0 and (range&1) whose sum is S. The first T[1]�S_n�p
values of the input are then set to a random value between 0 and (range&1), the
next T[2]�S_n�p values of the input are then set to another random value between
0 and (range&1), and so forth.

We selected these eight benchmarks for a variety of reasons. Previous researchers
have used the Uniform, Gaussian, and Zero benchmarks, and so we too included
them for purposes of comparison. But benchmarks should be designed to illicit the
worst case behavior from an algorithm, and in this sense the Uniform benchmark
is not appropriate. For example, for n>>p, one would expect that the optimal
choice of the splitters in the Uniform benchmark would be those which partition the
range of possible values into equal intervals. Thus, algorithms which try to guess
the splitters might perform misleadingly well on such an input. In this respect, the
Gaussian benchmark is more telling. But we also wanted to find benchmarks which
would evaluate the cost of irregular communication. Thus, we wanted to include
benchmarks for which an algorithm which uses a single phase of routing would find
contention difficult or even impossible to avoid. A naive approach to rearranging
the data would perform poorly on the Bucket Sorted benchmark. Here, every pro-
cessor would try to route data to the same processor at the same time, resulting in
poor utilization of communication bandwidth. This problem might be avoided by

11RANDOMIZED PARALLEL SORTING ALGORITHM

File: DISTL2 146212 . By:CV . Date:23:07:98 . Time:13:31 LOP8M. V8.B. Page 01:01
Codes: 3847 Signs: 3380 . Length: 52 pic 10 pts, 222 mm

an algorithm in which at each processor the elements are first grouped by destina-
tion and then routed according to the specifications of a sequence of p destination
permutations. Perhaps the most straightforward way to do this is by iterating over
the possible communication strides. But such a strategy would perform poorly with
the g-Group benchmark, for a suitably chosen value of g. In this case, using stride
iteration, those processors which belong to a particular group all route data to the
same subset of g destination processors. This subset of destinations is selected so
that, when the g processors route to this subset, they choose the processors in
exactly the same order, producing contention and possibly stalling. Alternatively,
one can synchronize the processors after each permutation, but this in turn will
reduce the communication bandwidth by a factor of p�g. In the worst case scenario,
each processor needs to send data to a single processor a unique stride away. This
is the case of the Staggered benchmark, and the result is a reduction of the com-
munication bandwidth by a factor of p. Of course, one can correctly object that
both the g-Group benchmark and the Staggered benchmark have been tailored to
thwart a routing scheme which iterates over the possible strides, and that another
sequence of permutations might be found which performs better. This is possible,
but at the same time we are unaware of any single phase deterministic algorithm
which could avoid an equivalent challenge. Finally, the Deterministic Duplicates
and the Randomized Duplicates benchmarks were included to assess the perfor-
mance of the algorithms in the presence of duplicate values.

4.2. EXPERIMENTAL RESULTS

For each experiment, the input is evenly distributed among the processors. The
output consists of the elements in non-descending order arranged among the pro-
cessors so that the elements at each processor are in sorted order and no element
at processor Pi is greater than any element at processor Pj , for all i< j.

Two variations were allowed in our experiments. First, radix sort was used to
sequentially sort integers, whereas merge sort was used to sort double precision
floating point numbers (doubles). Second, different implementations of the com-
munication primitives were allowed for each machine. Wherever possible, we tried
to use the vendor supplied implementations. In fact, IBM does provide all of our
communication primitives as part of its machine specific Collective Communication
Library (CCL) [7] and MPI. As one might expect, they were faster than the high-
level Split-C implementation.

Tables 1�4 display the performance of our sample sort as a function of input dis-
tribution for a variety of input sizes. In each case, the performance is essentially
independent of the input distribution. These tables present results obtained on a 64
node Cray T3D and a 64 node IBM SP-2; results obtained from the TMC CM-5
validate this claim as well. Because of this independence, the remainder of this section
will only discuss the performance of our sample sort on the single benchmark [U].

The results in Tables 5 and 6 together with their graphs in Fig. 1 examine the
scalability of our sample sort as a function of machine size. Results are shown for
the T3D, the SP-2-WN, and the CM-5. The appearance of a hyphen in the tables

12 HELMAN, BADER, AND JA� JA�

File: DISTL2 146213 . By:CV . Date:23:07:98 . Time:13:31 LOP8M. V8.B. Page 01:01
Codes: 2323 Signs: 1032 . Length: 52 pic 10 pts, 222 mm

TABLE 1

Sorting Integers (in seconds) on a 64-Node Cray T3D

Benchmark

Input size [U] [G] [2-G] [4-G] [B] [S] [Z] [DD] [RD]

256K 0.019 0.019 0.020 0.020 0.020 0.020 0.016 0.016 0.018
1M 0.068 0.068 0.070 0.070 0.070 0.069 0.054 0.054 0.058
4M 0.261 0.257 0.264 0.264 0.263 0.264 0.202 0.226 0.213

16M 1.02 1.01 1.02 1.02 1.02 1.02 0.814 0.831 0.826
64M 4.03 4.00 4.00 3.99 4.03 4.00 3.21 3.20 3.27

TABLE 2

Sorting Integers (in seconds) on a 64-Node IBM SP-2-WN

Benchmark

Input size [U] [G] [2-G] [4-G] [B] [S] [Z] [DD] [RD]

256K 0.041 0.039 0.040 0.041 0.041 0.040 0.042 0.040 0.041
1M 0.071 0.071 0.074 0.072 0.076 0.072 0.071 0.070 0.070
4M 0.215 0.210 0.219 0.213 0.218 0.218 0.207 0.213 0.213

16M 0.805 0.806 0.817 0.822 0.830 0.818 0.760 0.760 0.783
64M 3.30 3.19 3.22 3.24 3.28 3.25 2.79 2.83 2.83

TABLE 3

Sorting Doubles (in seconds) on a 64-Node Cray T3D

Benchmark

Input size [U] [G] [2-G] [4-G] [B] [S] [Z] [DD] [RD]

256K 0.022 0.022 0.023 0.023 0.023 0.023 0.021 0.021 0.021
1M 0.089 0.089 0.088 0.089 0.090 0.088 0.082 0.082 0.083
4M 0.366 0.366 0.364 0.366 0.364 0.362 0.344 0.344 0.341

16M 1.55 1.55 1.50 1.54 1.53 1.52 1.45 1.46 1.47
64M 6.63 6.54 6.46 6.44 6.46 6.52 6.23 6.25 6.24

13RANDOMIZED PARALLEL SORTING ALGORITHM

File: DISTL2 146214 . By:CV . Date:23:07:98 . Time:13:31 LOP8M. V8.B. Page 01:01
Codes: 1905 Signs: 759 . Length: 52 pic 10 pts, 222 mm

TABLE 4

Sorting Doubles (in seconds) on a 64-Node IBM SP-2-WN

Benchmark

Input size [U] [G] [2-G] [4-G] [B] [S] [Z] [DD] [RD]

256K 0.056 0.054 0.059 0.057 0.060 0.059 0.056 0.056 0.057
1M 0.153 0.152 0.158 0.156 0.163 0.156 0.151 0.146 0.147
4M 0.568 0.565 0.576 0.577 0.584 0.575 0.558 0.571 0.569

16M 2.23 2.23 2.24 2.28 2.26 2.25 2.20 2.22 2.26
64M 9.24 9.18 9.24 9.22 9.24 9.23 9.15 9.17 9.21

TABLE 5

Sorting 8M Integers (in seconds) Using a Variety
of Machines and Processors

Number of processors

Machine 8 16 32 64 128

CRAY T3D 3.32 1.77 0.952 0.513 0.284
IBM SP2-WN 2.51 1.25 0.699 0.413 0.266
TMC CM-5 �� 7.43 3.72 1.73 0.813

TABLE 6

Sorting 8M Doubles (in seconds) Using a Variety
of Machines and Processors

Number of processors

Machine 8 16 32 64 128

CRAY T3D 5.48 2.78 1.44 0.747 0.392
IBM SP2-WN 7.96 4.02 2.10 1.15 0.635
TMC CM-5 �� �� 6.94 3.79 1.83

14 HELMAN, BADER, AND JA� JA�

File: 740J 146215 . By:SD . Date:16:07:98 . Time:08:37 LOP8M. V8.B. Page 01:01
Codes: 2874 Signs: 2405 . Length: 52 pic 10 pts, 222 mm

FIG. 1. Scalability of sorting integers and doubles with respect to machine size.

indicates that that particular platform was unavailable to us. Bearing in mind that
these graphs are log-log plots, they show that for a fixed input size n the execution
time scales almost inversely with the number of processors p. While this is certainly
the expectation of our analytical model for doubles, it might at first appear to
exceed our prediction of an O(n�p log p) computational complexity for integers.
However, the appearance of an inverse relationship is still quite reasonable when
we note that, for values of p between 8 and 128, log p varies by only a factor of 7�3.
Moreover, this O(n�p log p) complexity is entirely due to the merging in Step (8),
and in practice, Step (8) never accounts for more than 300 of the observed execu-
tion time. Note that the complexity of Step 8 could be reduced to O(n�p) for
integers using radix sort, but the resulting execution time would, in most cases, be
slower.

The graphs in Fig. 2 examine the scalability of our sample sort as a function of
problem size, for differing numbers of processors. They show that for a fixed num-
ber of processors there is an almost linear dependence between the execution time
and the total number of elements n. While this is certainly the expectation of our
analytic model for integers, it might at first appear to exceed our prediction of a
O(n�p log n) computational complexity for floating point values. However, this
appearance of a linear relationship is still quite reasonable when we consider that
for the range of values shown log n differs by only a factor of 1.2.

Next, the graphs in Fig. 3 examine the relative costs of the eight steps in our sam-
ple sort. Results are shown for both a 64 node T3D and a 64 node SP-2-WN, using
both the integer and the double versions of the [U] benchmark. Notice that for
n=64M integers, the sequential sorting and merging performed in Steps (3) and (8)
consume approximately 800 of the execution time on the T3D and approximately
700 of the execution time on the SP-2. In contrast, the two transpose operations
in Steps (2) and (7) together consume only about 150 of the execution time on the
T3D and about 250 of the execution time on the SP-2. The difference in the dis-
tribution between these two platforms is likely due in part to the fact that an integer

15RANDOMIZED PARALLEL SORTING ALGORITHM

File: 740J 146216 . By:SD . Date:16:07:98 . Time:08:37 LOP8M. V8.B. Page 01:01
Codes: 1564 Signs: 1106 . Length: 52 pic 10 pts, 222 mm

FIG. 2. Scalability of sorting integers and doubles with respect to the problem size, for differing
numbers of processors.

is 64 bits on the T3D while only 32 bits on the SP-2. In contrast, doubles are 64
bits on both platforms. For n=64M doubles, the sequential sorting and merging
performed in Steps (3) and (8) consume approximately 800 of the execution time
on both platforms, whereas the two transpose operations in Steps (2) and (7)
together consume only about 150 of the execution time. Together, these results
show that our algorithm is extremely efficient in its communication performance.

Finally, Tables 7 and 8 show the experimentally derived expected value (E) and
sample standard deviation (STD) of the coefficients c1 , :1 , c2 , and :2 used to
describe the complexity of our algorithm in Section 3. The values in Table 7 were
obtained by analyzing data collected while sorting each of the duplicate benchmarks
[DD] and [RD] 50 times on a 64-node Cray T3D. For each trial, the values recorded
were the largest occurrence of each coefficient at any of the 64 processors. In

16 HELMAN, BADER, AND JA� JA�

File: 740J 146217 . By:SD . Date:16:07:98 . Time:08:38 LOP8M. V8.B. Page 01:01
Codes: 1497 Signs: 1011 . Length: 52 pic 10 pts, 222 mm

FIG. 3. Distribution of the execution time among the eight steps of sample sort.

contrast, the values in Table 8 were obtained by analyzing data collected while sort-
ing each of the unique benchmarks [G], [B], [2-G], [4-G], and [S] 20 times. In
every trial, a different seed was used for the random number generator, both to
generate the benchmark where appropriate and to distribute the keys into bins as
part of Step (1). The experimentally derived expected values in Table 7 for c1 , :1 ,
c2 , and :2 agree strongly with the theoretically derived bounds for duplicate keys
of c1�2, :1�c1 , c2�5.24, and :2�2.62 for p2�n�(3 ln n). Similarly, the experi-
mentally derived expected values in Table 8 for c1 , :1 , c2 , and :2 agree strongly
with the theoretically derived bounds for unique keys of c1�2, :1�c1 , c2�3.10,
and :2�1.77 for p2�n�(3 ln n). Note that expected values for c2 and :2 are actually
less for duplicate values than for unique values, which is the opposite of what we

17RANDOMIZED PARALLEL SORTING ALGORITHM

File: DISTL2 146218 . By:CV . Date:23:07:98 . Time:13:31 LOP8M. V8.B. Page 01:01
Codes: 3498 Signs: 2385 . Length: 52 pic 10 pts, 222 mm

TABLE 7

Statistical Evaluation of the Experimentally Observed Values of
the Algorithm Coefficients Using the Duplicate Benchmarks

keys�proc E(c1) STD(c1) E(:1) STD(:1) E(c2) STD(c2) E(:2) STD(:2)

4K 2.02 0.104 1.08 0.019 2.12 0.336 1.45 0.183
16K 1.48 0.044 1.04 0.008 1.49 0.133 1.18 0.089
64K 1.23 0.019 1.02 0.003 1.24 0.062 1.09 0.044

256K 1.11 0.009 1.01 0.002 1.12 0.026 1.04 0.020
1M 1.06 0.005 1.00 0.001 1.06 0.015 1.02 0.012

might expect from the computed bounds. This might simply reflect our limited
choice of benchmarks, or it may suggest that the bounds computed for duplicate are
looser than those computed for unique values.

4.3. Comparison with Previous Results

Despite the enormous theoretical interest in parallel sorting, we were able to
locate relatively few empirical studies. Of these, only a few were done on machines
which either were available to us for comparison or involved code which could be
ported to these machines for comparison. In Table 9, we compare the performance
of our sample sort algorithm with that of Alexandrov et al. [1] on a 32 node CM-
5. The times reported for Alexandrov et al. were determined by us directly using
Split-C code supplied by the authors which had been optimized for a Meiko CS-2.
In Table 10, we compare the performance of our sample sort algorithm with that
of Dusseau [16] on a 64 node CM-5, showing the time required per element (in
microseconds) to sort 64M integers. Note that the times for Dusseau were obtained
from the graphed results reported by the author for code written in Split-C.

Finally, there are the results for the NAS Parallel Benchmark [28] for Integer
Sorting (IS). The name of this benchmark is somewhat misleading. Instead of
requiring that the integers be placed in sorted order as we do, the benchmark only
requires that they be ranked without any reordering, which is a significantly simpler
task. Specifically, the Class A Benchmark requires ten repeated rankings of a
Gaussian distributed random input consisting of 223 integers ranging in value from

TABLE 8

Statistical Evaluation of the Experimentally Observed Values of
the Algorithm Coefficients Using the Unique Benchmarks

keys�proc E(c1) STD(c1) E(:1) STD(:1) E(c2) STD(c2) E(:2) STD(:2)

4K 2.02 0.091 1.08 0.017 2.64 0.935 1.55 0.181
16K 1.48 0.044 1.04 0.007 1.65 0.236 1.25 0.074
64K 1.23 0.021 1.02 0.003 1.30 0.087 1.12 0.034

256K 1.11 0.010 1.01 0.002 1.14 0.034 1.06 0.019
1M 1.06 0.005 1.00 0.001 1.07 0.013 1.03 0.011

18 HELMAN, BADER, AND JA� JA�

File: DISTL2 146219 . By:CV . Date:23:07:98 . Time:13:31 LOP8M. V8.B. Page 01:01
Codes: 2460 Signs: 997 . Length: 52 pic 10 pts, 222 mm

TABLE 9

Comparison (in seconds) of Our Sample Sort (HBJ) with That of Alexander et al. (AIS)

[U] [G] [2-G] [B]

int.�proc. HBJ AIS HBJ AIS HBJ AIS HBJ AIS

4K 0.049 0.153 0.050 0.152 0.051 1.05 0.055 0.181
8K 0.090 0.197 0.090 0.192 0.092 1.09 0.094 0.193

16K 0.172 0.282 0.171 0.281 0.173 1.16 0.173 0.227
32K 0.332 0.450 0.330 0.449 0.335 1.34 0.335 0.445
64K 0.679 0.833 0.679 0.835 0.683 1.76 0.685 0.823

128K 1.65 2.02 1.64 2.02 1.64 2.83 1.64 1.99
256K 3.72 4.69 3.71 4.59 3.71 5.13 3.70 4.56
512K 7.97 10.0 7.85 9.91 7.93 9.58 7.95 9.98

TABLE 10

Comparison (in microseconds per integer) of Our Samples Sort (HBJ)
with That of Dusseau (DUS)

[U] [B] [Z]

int.�proc. HBJ DUS HBJ DUS HBJ DUS

1M 16.6 21 12.2 91 10.6 11

TABLE 11

Comparison of NAS Integer Sort (IS) Benchmark Times

Class A Class B

Number Best Our Best Our
Machine of processors reported time time reported time time

CM-5 32 43.1 29.8 NA 124
64 24.2 13.7 NA 66.4

128 12.0 7.03 NA 33.0

T3D 16 7.07 12.3 NA 60.1
32 3.89 6.82 16.57 29.3
64 2.09 3.76 8.74 16.2

128 1.05 2.12 4.56 8.85

SP-2-WN 16 2.65 10.3 10.60 46.6
32 1.54 5.97 5.92 25.5
64 0.89 3.68 3.41 13.6

128 0.59 2.52 1.98 8.45

19RANDOMIZED PARALLEL SORTING ALGORITHM

File: DISTL2 146220 . By:CV . Date:23:07:98 . Time:13:31 LOP8M. V8.B. Page 01:01
Codes: 3346 Signs: 2552 . Length: 52 pic 10 pts, 222 mm

TABLE 12

Comparison (in seconds) of Our General
Samples Sort (HBJ) with That of Tridgell
and Brent (TB)

[U]

Problem size HBJ TD

8M 4.57 5.48

0 to (219&1). The Class B Benchmark is similar, except that the input consists of
225 integers ranging in value from 0 to (221&1). Table 11 compares our results on
these two variations of the NAS Benchmark with the best reported times for the
CM-5, the T3D, and the SP-2-WN. We believe that our results, which were
obtained using high-level, portable code, compare favorably with the other reported
times, which were obtained by the vendors using machine-specific implementations
and perhaps system modifications.

The only performance studies we are aware of on similar platforms for
generalized sorting are those of Tridgell and Brent [30], who report the perfor-
mance of their algorithm using a 32 node CM-5 on a uniformly distributed random
input of signed integers, as described in Table 12.

5. CONCLUSION

In this paper, we introduced a novel variation on sample sort and conducted an
experimental study of its performance on a number of platforms using widely dif-
ferent benchmarks. Our results illustrate the efficiency and scalability of our algo-
rithm across the different platforms and appear to improve on all similar results
known to the authors. Our results also compare favorably with those reported for
the simpler ranking problem posed by the NAS Integer Sorting (IS) Benchmark.

We have also studied several variations on our algorithm which use differing
strategies to ensure that every bucket in Step (1) receives an equal number of
elements. The results obtained for these variations were very similar to those reported
in this paper. On no platform did the improvements exceed approximately 50,
and in many instances they actually ran more slowly. We believe that a significant
improvement of our algorithm would require the enhancement of the sequential
sorting and merging in Steps (3) and (8), and that there is little room for significant
improvement in either the load balance or the communication efficiency.

ACKNOWLEDGMENTS

We thank Ronald Greenberg of the Department of Mathematical and Computer Sciences at Loyola
University, Chicago, for his valuable comments and encouragement. We also thank the CASTLE�
Split-C group at The University of California, Berkeley, especially for the help and encouragement
from David Culler, Arvind Krishnamurthy, and Lok Tin Liu. We acknowledge the use of the UMIACS
16-node IBM SP-2-TN, which was provided by an IBM Shared University Research award

20 HELMAN, BADER, AND JA� JA�

File: DISTL2 146221 . By:CV . Date:23:07:98 . Time:13:31 LOP8M. V8.B. Page 01:01
Codes: 9916 Signs: 4125 . Length: 52 pic 10 pts, 222 mm

and an NSF Academic Research Infrastructure Grant CDA9401151. Arvind Krishnamurthy provided
additional help with his port of Split-C to the Cray Research T3D [2]. The Jet Propulsion Lab�Caltech
256-node Cray T3D Supercomputer used in this investigation was provided by funding from the NASA
Offices of Mission to Planet Earth, Aeronautics, and Space Science. We also acknowledge William
Carlson and Jesse Draper from the Center for Computing Science (formerly Supercomputing Research
Center) for writing the parallel compiler AC (version 2.6) [10] on which the T3D port of Split-C has
been based. We also thank the Numerical Aerodynamic Simulation Systems Division of NASA's Ames
Research Center for use of their 160-node IBM SP-2-WN. This work also utilized the TMC CM-5 at
National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, under
Grant ASC960008N. Please see http:��www.umiacs.umd.edu�research�EXPAR for related work
by the authors. All the code used in this paper is freely available to interested parties from our
anonymous ftp site ftp:��ftp.umiacs.umd.edu�pub�EXPAR. We encourage other researchers to
compare with our results on similar inputs.

REFERENCES

1. A. Alexandrov, M. Ionescu, K. Schauser, and C. Scheiman, LogGP: Incorporating long messages
into the LogP model - One step closer towards a realistic model for parallel computation, in ``7th
Annual Symposium on Parallel Algorithms and Architectures,'' ACM, Santa Barbara, CA, 1995,
pp. 95�105.

2. R. H. Arpaci, D. E. Culler, A. Krishnamurthy, S. G. Steinberg, and K. Yelick, Empirical evaluation
of the CRAY-T3D: A compiler perspective, in ``Proceedings of the 22nd Annual International Sym-
posium on Computer Architecture,'' ACM�IEEE, Portofino, Italy, 1995, pp. 320�331.

3. D. A. Bader, D. R. Helman, and J. Ja� Ja� , Practical parallel algorithms for personalized communication
and integer sorting, ACM J. Exp. Algorith. 1, No. 3 (1996), 1�42. [http:��www.jea.acm.org�
1996�BaderPersonalized�.

4. D. A. Bader and J. Ja� Ja� , Practical parallel algorithms for dynamic data redistribution, median
finding, and selection, in ``Proceedings of the 10th International Parallel Processing Symposium,''
IEEE Computer Society, Honolulu, HI, 1996, pp. 292�301.

5. D. A. Bader and J. Ja� Ja� , Parallel algorithms for image histogramming and connected components
with an experimental study, J. Parallel Distributed Comput. 35, No. 2 (June 1996), 173�190.

6. D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, L. Dagum, R. Fatoohi, S. Fineberg,
P. Frederickson, T. Lasinski, R. Schreiber, H. Simon, V. Venkatakrishnan, and S. Weeratunga, ``The
NAS Parallel Benchmarks,'' Numerical Aerodynamic Simulation Facility Tech. Rep. RNR-94-007,
NASA Ames Research Center, Moffett Field, CA, March 1994.

7. V. Bala, J. Bruck, R. Cypher, P. Elustondo, A. Ho, C. T. Ho, S. Kipnis, and M. Snir, CCL: A por-
table and tunable collective communication library for scalable parallel computers, IEEE Transac-
tions on Parallel and Distributed Systems 6, No. 2 (Feb. 1995), 154�164.

8. K. Batcher, Sorting networks and their applications, in ``Proceedings of the AFIPS Spring Joint
Computer Conference 32,'' Reston, VA, 1968, pp. 307�314.

9. G. E. Blelloch, C. E. Leiserson, B. M. Maggs, C. G. Plaxton, S. J. Smith, and M. Zagha, A com-
parison of sorting algorithms for the connection machine CM-2, in ``Proceedings of the Symposium
on Parallel Algorithms and Architectures,'' ACM, Newport, RI, 1991, pp. 3�16.

10. W. W. Carlson and J. Draper, ``AC for the T3D,'' Supercomputing Research Center Tech. Rep.
SRC-TR-95-141, Supercomputing Research Center, Bowie, MD, February 1995.

11. H. Chernoff, A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observ-
ations, Annals of Math. Stat. 23, (1952), pp. 493�509.

12. Cray Research, Inc, ``SHMEM Technical Note for C, October 1994, Revision 2.3.

13. D. E. Culler, A. Dusseau, S. C. Goldstein, A. Krishnamurthy, S. Lumetta, T. von Eicken, and
K. Yelick, Parallel programming in Split-C,'' in ``Proceedings of Supercomputing '93, ACM�IEEE,
Portland, OR, 1993, pp. 262�273.

21RANDOMIZED PARALLEL SORTING ALGORITHM

File: DISTL2 146222 . By:CV . Date:23:07:98 . Time:13:31 LOP8M. V8.B. Page 01:01
Codes: 10063 Signs: 3716 . Length: 52 pic 10 pts, 222 mm

14. D. E.Culler, A. C. Dusseau, R. P. Martin, and K. E. Schauser, Fast parallel sorting under LogP:
From theory to practice, in ``Proceedings of the Workshop on Portability and Performance for
Parallel Processing,'' pp. 71�98. Wiley, Southampton, England, 1993�98.

15. D. E. Culler, R. M. Karp, D. A. Patterson, A. Sahay, K. E. Schauser, E. Santos, R. Subramonian,
and T. von Eicken, LogP: Towards a Realistic Model of Parallel Computation, in ``Fourth Sym-
posium on Principles and Practice of Parallel Programming,'' ACM SIGPLAN, San Diego, CA,
1993, pp. 1�12.

16. C. Dusseau, Fast parallel sorting under LogP: Experience with the CM-5, IEEE Transa. Parallel
Distributed Systems 7, No. 8 (Aug. 1996), 791�805.

17. T. Hagerup and C. Ru� b, A guided tour of Chernoff bounds, Inform. Process. Lett. 33, No. 6 (Feb.
1990), 305�308.

18. W. L. Hightower, J. F. Prins, and J. H. Reif, Implementations of randomized sorting on large
parallel machines, in ``Proceedings of the 4th Annual Symposium on Parallel Algorithms and
Architectures,'' ACM, San Diego, CA, 1992, pp. 158�167.

19. J. S. Huang and Y. C. Chow, Parallel sorting and data partitioning by sampling, in ``Proceedings of
7th Computer Software and Applications Conference,'' 1983, pp. 627�631.

20. F. T. Leighton, Tight bounds on the complexity of parallel sorting, IEEE Trans. Comput. C-34,
No. 4 (Apr. 1985), 344�354.

21. H. Li and K. C. Sevcik, ``Parallel Sorting by Overpartitioning,'' Computer Systems Research
Institute Tech. Rep. CSRI-295, University of Toronto, Canada, April 1994.

22. X. Li, P. Lu, J. Schaeffer, J. Shillington, P. S. Wong, and H. Shi, On the versatility of parallel sorting
by regular sampling, Parallel Computing 19, No. 10 (Oct. 1993), 1079�1103.

23. J. M. Marberg and E. Gafni, Sorting in constant number of row and column phases on a mesh,
Algorithmica 3, No. 4 (1988), 561�572.

24. Message Passing Interface Forum, ``MPI: A Message-Passing Interface Standard,'' University of
Tennesse Tech. Rep., University of Tennessee, Knoxville, TN, June 1995, Version 1.1.

25. C. G. Plaxton, ``Efficient Computation on Sparse Interconnection Networks,'' Computer Science
Tech. Rep. STAN-CS-89-1283, Stanford University, Stanford, CA, September 1989.

26. M. J. Quinn, Analysis and benchmarking of two parallel sorting algorithms: hyperquicksort and
quickmerge, BIT 29, No. 2 (1989), 239�250.

27. J. H. Reif and L. G. Valiant, A logarithmic time sort for linear sized networks, J. ACM 34, No. 1
(Jan. 1987), 60�76.

28. S. Saini and D. H. Bailey, ``NAS Parallel Benchmarks Results 12-95,'' Numerical Aerodynamic
Simulation Facility Tech. Rep. NAS-95-021, NASA Ames Research Center, Moffett Field, CA,
December 1995.

29. H. Shi and J. Schaeffer, Parallel sorting by regular sampling, J. Parallel Distributed Comput. 14,
No. 4 (Apr. 1992), 361�372.

30. A. Tridgell and R. P. Brent, ``An Implementation of a General-Purpose Parallel Sorting Algorithm,''
Computer Sciences Laboratory Technical Report TR-CS-93-01, Australian National University,
Canberra, Australia, February 1993.

31. L. G. Valiant, A bridging model for parallel computation, Commun. ACM 33, No. 8 (Aug. 1990),
103�111.

32. S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, The SPLASH-2 programs: characteriza-
tion andmethodological considerations, in ``Proceedings of the 22nd Annual International Sym-
posium on Computer Architecture,'' ACM�IEEE, Portofino, Italy, 1995, pp. 24�36.

DAVID R. HELMAN is currently a graduate student in the Electrical Engineering Department at the
University of Maryland. He received a B.A. in molecular biophysics and biochemistry from Yale Univer-
sity in 1982, a B.T.L. from the Ner Israel Rabbinical College in 1986, and a M.S. in electrical engineering

22 HELMAN, BADER, AND JA� JA�

File: DISTL2 146223 . By:CV . Date:23:07:98 . Time:13:31 LOP8M. V8.B. Page 01:01
Codes: 2670 Signs: 2252 . Length: 52 pic 10 pts, 222 mm

from the University of Maryland in 1993. His research interests are in the general area of high perfor-
mance computing, focusing on the design of efficient practical parallel algorithms for solving com-
binatorical and image processing problems.

DAVID A. BADER holds a Ph.D. in electrical engineering from the University of Maryland, College
Park. He is currently an assistant professor in the Department of Electrical and Computer Engineering
of The University of New Mexico, Albuquerque. As an NSF CISE Research Associate in Experimental
Computer Science with the Institute for Advanced Computer Studies at the University of Maryland
(UMIACS) from 1996�1997, he worked closely with Earth scientists at NASA�GSFC and University of
Maryland's Geography Department to develop a high performance system for on-demand queries of
terascale remotely sensed Earth science data used for monitoring long-term, global studies of the Earth.
His research interests are in the general area of high performance computing with particular emphasis
on clustered systems interconnected by high-speed networks, experimental parallel algorithms for data
communication, combinatorial and image processing applications, and programming methodologies for
clusters of SMP workstations. Dr. Bader is a member of Sigma Xi, IEEE, and ACM.

JOSEPH JA� JA� received the Ph.D. degree in applied mathematics from Harvard University in 1977. He
currently holds the positions of Director of Institute for Advanced Computer Studies and Professor of
Electrical Engineering at the University of Maryland, College Park. He has published numerous articles
on parallel algorithms, image processing, combinatorial and algebraic complexity, and VLSI signal
processing. His current research interests are in the general area of high performance computing with a
particular emphasis on the processing and management of earth system science data. He is the author of
the book ``An Introduction to Parallel Algorithms'' published by Addison-Wesley, 1992. He is currently
a subject area editor on parallel algorithms for Journal of Parallel and Distributed Computing, and an
associate editor for IEEE Transactions on Parallel and Distributed Systems.

� � � � � � � � � �

23RANDOMIZED PARALLEL SORTING ALGORITHM

