
Parallel Algorithms for Personalized Communication and Sorting

With an Experimental Study

(Extended Abstract)

David R. Helman David A. Bader* Joseph J6JAt

Institute for Advanced Computer Studies and

Department of Electrical Engineering,

University of Maryland, College Park, MD 20742

{helman, dbader, joseph}@umiacs. umd.edu

Abstract

A fundamental challenge for parallel computing is to obtain

high-level, architecture independent, algorithms which exe-

cute efficiently on general-purpose parallel machines. With

the emergence of message passing standards such as MPI, it

has become easier to design efficient and portable parallel al-

gorithms by making use of these communication primitives.

While existing primitives allow an assortment of collective

communication routines, they do not handle an important

communication event when most or all processors have non-

uniformly sized personalized messages to exchange with each

other. We first present an algorithm for the h-relation per-

sonalized communication whose efficient implementation

will allow high performance implementations of a large class

of algorithms.

We then consider how to effectively use these communi-

cation primitives to address the problem of sorting. Previ-

ous schemes for sorting on general-purpose parallel machines

have had to choose between poor load balancing and irreg-

ular communication or multiple rounds of all-to-all person-

alized communication. In this paper, we introduce a novel

variation on sample sort which uses only two rounds of reg-

ular all-to-all personalized communication in a scheme that

yields very good load balancing with virtually no overhead.

Another variation using regular sampling for choosing the

splitters has similar performance with deterministic guar-

anteed bounds on the memory and communication require-

ments. Both of these variations efficiently handle the pres-

ence of duplicates without the overhead of tagging each el-

ement.

The personalized communication and sorting algorithms

presented in this paper have been coded in SPLIT-C and

run on a variety of platforms, including the Thinking Ma-

chines CM-5, IBM SP-2, Gray Research T3D, Meiko Scien-

tific CS-2, and the Intel Paragon. Our experimental results

are consistent with the theoretical analyses and illustrate

“ The support by NASA Graduate Student Researcher Fellowship
No NGT-50951 is gratefully acknowledged

tsupported in part by NSF grant No cCR-91113135 and NSF

HPCC/GCAG grant No. BIR-9318183,

Permission to make digital/bard copies of all or part of this material for
personal or classroom use is granted without fee provided that the copies
are not made or $stributed for profit or commercial advantage, tbe copy-
n,ght notice, the .Utle,of the publication and Its date appear, and notice is
given that copymght M by pernmwon of the ACM, Inc. To copy otherwise,
to republish, to post on servers or to redistribute to Iista, requires specific
permission and/or fee.
SPAA’96, Padua, Italy
01996 ACM 0-89791-809-6/96/06 ..$3.50

the scalability and efficiency of our algorithms across differ-

ent platforms. In fact, they seem to outperform all similar

algorithms known to the authors on these platforms, ancl

performance is invariant over the set of input distributions

unlike previous efficient algorithms. Our sorting results also

compare favorably with those reported for the simpler rank-

ing problem posed by the NAS Integer Sorting (1S) Bench-

mark.

Keywords: Parallel Algorithms, Personalized Conlmu-

nication, Sorting, Sample Sort, Radix Sort, Parallel Perfor-

mance.

1 Introduction

A fundamental problem in parallel computing is to cleslgn

high-level, architecture independent, algorithms that exe-

cute efficiently on general-purpose parallel machines. The

aim is to be able to achieve portability and high perfor-

mance simultaneously. Note that it is considerably easier to

achieve portability alone (say, by using PVM) or high per-

formance (say, by using sophisticated programmers to fine

tune the algorithm to the specific machine). There are cnr-

rently two factors that make this fundamental problem more

tractable. The first is the emergence of a dominant parallel

architecture consisting of a number of powerful micropro-

cessors interconnected by either a proprietary interconnect

or a standard off-the-shelf interconnect. The second factor

is the emergence of standards, such as the message passing

standard MPI [20], for which machine builders and software

developers will try to provide efficient support. Our work

builds on these two developments by presenting a theoret-

ical and an experimental framework for designing parallel

algorithms. In this abstract, we sketch our contributions in

two important problems: personalized communication and

sorting. We start with a brief outhne of the computation

model.

We view a parallel algorithm as a sequence of local com-

putations interleaved with communication steps, and We al-

2111

low computation and communication to overlap. We ac-

count for communication costs as follows. Assuming no con-

gestion, the transfer of a block consisting of m contiguous

words between two processors takes O(T + am) time, where

r is a bound on the latency of the network and a is the

time per word at which a processor can inject or receive

data from the network. The cost of each of the collective

communication primitives (see below) will be modeled by

0(. + a max (m, p)), where m is the maximum amount of

data transmitted or received by a processor. Such a cost

can be justified by using our earlier work [17, 6, 5]. Using

this cost model, we can evaluate the communication time

Tcomm (n, p) of an algorithm as a function of the input size

n, the number of processors p , and the parameters r and a.

The coefficient of I- gives the total number of times collec-

tive communication primitives are used, and the coefficient

of a gives the maximum total amount of data exchanged

between a processor and the remaining processors. This

communication model is close to a number of similar mod-

els (e.g. the LogP [13], BSP [24], and LogGP [1] models)

that have recently appeared in the literature and seems to be

well-suited for designing parallel algorithms on current high

performance platforms. We define the computation time

Tcomp (n, p) as the maximum time taken by w processor

to perform all of its local computation steps.

Our algorithms are implemented in SPLIT-C [1 I], an ex-

tension of C for distributed memory machines. The algo-

rithms make use of MPI-like communication primitives but

do not make any assumptions as to how these primitives

are actually implemented. Our collective communication

primitives, described in detail in [6], are similar to those of

MPI [20], the IBM POWERparallel [7], and the Cray MPP

systems [1 O] and, for example, include the following: trans-

pose, beast, gather, and scatter. Brief descriptions of

these are as follows. The transpose primitive is an all-to-

all personalized communication in which each processor has

to send a unique block of data to every processor, and all the

blocks are of the same size. The beast primitive is called to

broadcast a block of data from a single source to all the re-

maining processors. The primitives gather and scatter are

companion primitives whereby scatter divides a single ar-

ray residing on a processor into equal-sized blocks which are

then distributed to the remaining processors, and gather

coalesces these blocks residing on the different processors

into a single array on one processor,

2 Main Results and Significance

In this section we state the main results achieved for solving

the problems of personalized communication and sorting.

Problem 1 (h-Relation Personalized Communication):

A set of n messages is to be routed such that each processor

is the origin or destination of at most h messages

Result: A new deterministic algorithm using two rounds of

the transpose primitive, with optimal complexity and very

small constant coefficients, is shown to be very efficient and

scalable across different platforms and over different input

distributions.

Significance: The importance of this problem has been

stated in many papers (e.g. [24, 22]). Our algorithm seems

to achieve the best known experimental results for this prob-

lem. The general approach was independently described by

Kaufmann et al. [18] and Ranka et al. [21] around the same

time as our earlier draft [3] appeared, but our algorithm is

simpler, has less overhead, and has a tighter bound size for

the intermediate collective communication.

Problem 2 (Sorting): Rearrange n equally distributed el-

ements amongst p processors such that they appear in non-

decreasing order starting from the smallest indexed proces-

sor.

Results: (1) A novel variation of sample sort that uses only

two rounds of regular all-to-all personalized communication

and that maintains very good load balancing with virtu-

ally no overhead. (2) A new deterministic algorithm that

achieves almost the same performance as (1) by using regu-

lar sampling. (3) An efficient implementation of radix sort

that makes use of our personalized communication scheme.

Significance: We have developed a suite of benchmarks

and conducted extensive experimentations related to Prob-

lem 2. Our algorithms have consistently performed very well

across the different benchmarks and the different platforms,

Algorithm (1) has outperformed all similar results known to

the authors on our platforms. It even compares favorably

to the machine-specific implementations reported by some

of the machine vendors for the Class A NAS IS Benchmark,

which only requires the easier task of ranking. Algorithm

(2) has almost the same performance as (1) while guarantee-

ing memory and communication bounds, and Algorithm (3)

achieves the best known execution times for a stable integer

sorting algorithm. Additionally, all of our algorithms effi-

ciently handle the presence of duplicates without the over-

head of tagging each element.

3 Personalized Communication

For ease of presentation, we describe the personalized com-

munication algorithm for the case when the input is initially

212

evenly distributed amongst the processors. The reader is

directed to [4] for the general case. Consider a set of n

elements eveulv distributed amongst p processors in such

a manner that no processor holds more than ~ elements.

Each element consists of a pair (data, dest), where dest is

the location to where the data is to be routed. There are no

assumptions made about the pattern of data redistribution,

except that no processor is the destination of more than h

elements and thus h z ~, Lt’e assume for simplicity (and

without loss of generality) that h is an integral multiple of

p.

3.1 Algorithm

In our solution, we use two rounds of the transpose col-

lective communication primitive. In the first round, each

element is routed to an intermediate destination, and dur-

ing the second round, it is routed to its final destination.

The pseudocode for our algorithm is as follows:

● Step (l): Each processor P,, for (O ~ ~ ~ p – 1),

assigns Its ~ elements to one of p bins according to

the following rule: if element k is the first occurrence

of an element with destination J, then it is placed into

bin (t +,1 ~ mod p. Otherwise, if the last element with

destination j was placed in bin b, then element k is

placed into bin (b + 1) mod p,

● Step (2): Each processor P, routes the contents of

bin J to processor Pj, for (O s i, j s p – 1). Since

we established that no bin can have more than ~ + ~
P’

elements [4], this is equivalent to performing a trans-

pose communication primitive with block size ~ + ~.

● Step (3): Each processor P, rearranges the elements

received in Step (2) into bins according to each ele-

ment’s final destination.

c Step (4): Each processor P, routes the contents of

bin y to processor P], for (O < z,j < p – 1).Since we

established that no bin can have more than ~ + ~ ele-

ments [-i], this is equivalent to performing a transpose

primitive with block size ~ + ~.

The overall complexity of our algorithm is Tco~P(n, p) +

Tcurrwrt(n, P) = O(h) + 2 [r + (h +p2) a] , which is asymp-

totically optimal with very small constants for P2 s n.

3.2 Summary of Experimental Results

\\’e examine the performance of our h-relation algorithm

on various configurations of the IBM SP-2 and Cray T3D,

using four values of h: h = ~, 2:, A:, and 8;. More results

h

Final Distnbutlon of Elements

I

L
(Jl~ 2nfh -1

Processors

p- I

Figure 1: Final distribution of the keys colrespon(lmz to ollr

input data sets

are given in [4], The data sets used m these cxperlmenth are

defined as follows. Our input of size n is inltlally dl~trlb[lted

cyclically across the p processors such that ewh procesfiof

P, initially holds ~ keys, for (O s z < p – 1). For h = ~ tll(

input consists of vo = ~ keys labelled for PO, followed bv

UI = ~ ke.vs labelled for PI, and so forth, (with v, = ~ LX,vs

labelled for P,), with the last LIP–I = ~ keys Iabelled ko1

Pp_l. Note that this results ,n the same data movement a.

the transpose primitive. For h > ~. instead of an cqlla]

number of elements destined for each processor, the function

u,, for (0 ~ z ~ p — 1), is characterized by

(1)

The result of this data movement, sho~vu in Figure].]>

that processor O receives the largest imbalance of elements.

i.e. h, while other processors receive val-ying block si~es

ranging from O to at most h. For h = 8;, apploxi]uately ~

processors receive no elements, and hence this rcpreseuts an

extremely unbalanced case.

As shown in Figure 2, the time to toute an h-lelation pe-

rsonalized communication for a given input size on a varylug

number of processors (p) scales reversely \vit h p whenever

n is large compared with p. However, for inputs which are

small compared with the machine size, the commllnication

time is dominated by 0(p2) as shown in the case of the

128-processor Cray T3D with n = 2561{.

1Note that, the personalized camn?linlcatloll IS m<>r, g$~rl~ral t I1:LII
a transpose prlmltll,e and does n,ot make the assllmprlc,n that tiara
M already held m contiguous, reg~llar sized l)ufTcrs

213

IBM SP-2

Performance of h-Relatton

Personalized Commurucatlon

wlthh=4 n/p

I 1

~ El
— p,4

-- 4“

— p=a

_D ,16

G

;’
P

J//

: /
/’ ‘

I
e-’

01
32k 64K 12’SK 256K 512K

Total Number of Elements

Cray Research T3D

Performance of h-Relation

Personalized Communication

w1thh=4 n/p

1

IW5’2
256K 512K IM

Total Number of Elements

Figure 2: Performance of personalized communication (h =

4 ~) with respect to machine and problem size.

4 Sorting

4.1 A New Sample Sort Algorithm

Consider the problem of sorting n elements equally dis-

tributed amongst p processors, where we assume without

loss of generality that p divides n evenly. The idea behind

sample sort is to find a set of p— 1 splztters to partition the n

input elements into p groups indexed from O up to p — 1 such

that every element in the ith group is less than or equal to

each of the elements in the (Z + l)th group, for O < z < p – 2,

Then the task of sorting each of the p groups can be turned

over to the correspondingly indexed processor, after which

the n elements will be arranged in sorted order. The effi-

ciency of this algorithm obviously depends on how well we

divide the input, and this in turn depends on how well we

choose the splitters. One way to choose the splztters IS by

randomly sampling the input elements at each processor -

hence the name sample sort.

Previous versions of sample sort [16, 8, 12] have ran-

domly chosen s samples from the ~ elements at each pro-

cessor, routed them to a single processor, sorted them at

that processor,
th

and then selected every s element, as a

splztter. Each processor P, then performs a binary search

on these splitters for each of its input values and then uses

the results to route the values to the appropriate destina-

tion, after which local sorting is done to complete the sorting

process. The first difficulty with this approach is the work

involved in gathering and sorting the splttter-s. A larger value

of s results in better load balancing, but it also increases the

overhead. The second difficulty is that no matter how the

routing is scheduled, there exist inputs that give rise to large

variations in the number of elements destined for different

processors, and this in turn results in an Inefficient use of

the communication bandwidth. Moreover, such an irreg-

ular communication scheme cannot take advantage of the

regular communication primitives proposed under the MPI

standard [20]. The final difficulty with the original approach

is that duplicate values are accommodated by tagging each

item with some unique value [8]. This, of course, doubles

the cost of both memory access and interprocessor commu-

nication.

In our version of sample sort, we incur no overhead in ob-

taining ~ samples from each processor and in sorting these

samples to identify the splitters, Because of this very high

oversampling, we are able to replace the irregular routing

with exactly two calls to our transpose primitive, and \ve

are able to efficiently accommodate the presence of dupli-

cates without resorting to tagging. The pseudo code for our

algorithm is as follows:

●

o

●

Step (l): Each processor P, (0 < t < p – 1) randomly

assigns each of its ~ elements to one of p buckets, With

high probability, no bucket will receive more than c1 ~

elements, where c1 is a constant to be defined later,

Step (2): Each processor P, routes the contents of

bucket J to processor Pj, for (O ~ Z, J ~ p – 1).Since

with high probability no bucket will receive more than

cl ~ elements, this is equivalent to performing a trans-

pose operation with block size c1 ~,

Step (3): Each processor P, sorts the (al ~ s c1 ~)

values received in Step (2) using an appropriate se-

quential sorting algorithm. For integers we use the

radix sort algorithm, whereas for floating point num-

bers we use the merge sort algorithm.

Step (4): From its sorted list of (/3 ~ s c1 ~) ele-

()

th

ments, processor PO selects each j~~ element as

Splitter[j], for (1 s j s p). By default, Splitter~] is

the largest value allowed by the data type used. Ad-

ditionally, for each Splitter[j], binary search is used to

define a value Frac[j] which is the fraction of the to-

tal elements at processor PO with the same value as

(
Splitter[j] which also lie between index (j – 1)/3 ~

)

and (~~~-’)inclusive’y

Step (5): Processor Po broadcasts the p splitters

and their $rac values to the other p — 1 processors.

Step (6): Each processor P, uses binary search on its

sorted local array to define for each of the p splitters

a subsequence SJ. The subsequence associated with

Splitter[j] contains values which are greater than or

equal to Splitter[j – 1] and and less then or equal to

Splitter[j], and includes Frac [~] of the total number

of elements in the local array with the same value as

Splitter[j].

Step (7): Each processor P, routes the subsequence

associated with Splitter[j] to processor Pj, for (O <

Z, j < p — 1). Since with high probability no sequence

will contain more than C2 ~ elements, where cz is a

constant to be defined later, this is equivalent to per-

forming a transpose operation with block size C2 ~.

Step (8): Each processor P, merges the p sorted sub-

sequences received in Step (7) to produce the Zth col-

umn of the sorted array. Note that, with high probabil-

ity, no processor has received more than aZ ~ elements,

where rxz is a constant to be defined later.

We can establish the complexity of this algorithm with

high probability - that is with probability ~ (1 – n–’) for

some positive constant c. But before doing this, we need

the results of the following theorem, whose proof has been

omitted for brevity [14].

Theorem 1: The number of elements in each bucket at

the completion of Step (1) is at most c1 ~, the number

of elements received by each processor at the completion

of Step (7) is at most CY2~, and the number of elements

exchanged by any two processors in Step (7) is at most

C2 ~, all Witir high probability for any c1 z 2, crz z 1.77

(a, ~ 2.62 for duplicates), C2 ~ 3.10 (C2 ~ 4.24 for dupli-

cates), and p2 < &.

With these bounds on the values of c1, a2, and C2, the

aualysis of our sample sort algorithm is as follows. Steps

(l), (3), (4), (6), and (8) involve no communication and

are dominated by the cost of the sequential sorting in Step

(3) and the merging in Step (8). Sorting integers using

radix sort requires O (~) time, whereas sorting floating point

numbers using merge sort requires O (~ log ~) time. Step

(8) requires O (~ log p) time if we merge the sorted subse-

quences in a binary tree fashion. Steps (2), (5), and (7)

call the communication primitives transpose, beast, and

transpose, respectively. The analysis of these primitives

in [6] shows that with high probability these three steps

()
require Tcomm(n,p) < T + 23 (p – 1) a , T..mm(n,p) <

/ \

()(r +Pa), andT~~~~(n,p) < r +4.24; (P – 1) a , respec-

tively. Hence, with high probability, the overall complexity

of our sample sort algorithm is given (for floating point num-

bers) by

T(n, p) = TcO~p(n, p) + TCOTTLm(~, P)

= O(~logn+~+~a) (~)

forp2 < *.

Clearly, our algorithm is asymptotically optimal with

very small coefficients. But it is also important to perform

an empirical evaluation of our algorithm using a wide va-

riety of benchmarks. Our algorithm was implemented and

tested on nine different benchmarks, each of which had both

a 32-bit integer version (64-bit on the Cray T3D) and a 64-

bit double precision floating point number (doubJe) version.

The details and the rationale for these benchmarks are de-

scribed in Appendix A. Table I displays the performance of

our sample sort as a function of input distribution for a va-

riety of input sizes. The results show that the performance

is essentially independent of the input distribution. There is

a slight preference for those benchmarks which contain high

numbers of duplicates, but this is attributed to the reduced

time required for sequential sorting in Step (3).

I Random Sample Sorting of Integers

Sorting I Problem Size

‘ ‘B-‘ 0.0707 0.272 1.08 4.27

-s” 0.0713 0.277 1.08 4.23

“z” 0.0551 0.214 0.888 3.49

[WR]
I , I !

I 0.0710 / 0.269] 1.07 4.22

RD1 []] 0.0597 \ 0.230] 0.883 \ 3.48

Table I: Total execution time (in seconds) for sample sorting

a variety of benchmarks on a 64 node Cray T3D.

215

Scalability in Machine & Problem Size

on the T3D

10 ~ . j i.. --

1--- ~~~ ~

. ,. ----:. ,
:

#- ~

,

1 A & .--k .. —
~ . ..y__. _r_ A . ;-y— ~.

E:”,-
r-

01 , -- --- -- ..- ,..:.
.-;.

J——-

001
512K IM 2ivl 4M 8M

Total Number of Integers

-=-8 -+-16 +32 *64 -%-128

Scalability in Machine & Problem Size

on the SP-2-WN

10 ,

1“”:1

~. !...-’
,.

1

#

---.- ..— A --.. -. —+...-.. —- ---=--
z
~ “; , .: .:..”.

,-
1-

01 ---- -; .-J. --:. :
4 ; ;

.—. .—... —-— _~

001
51;K IM 2M 4M 8M

Total Number of Integers

+8 *16-A-32*64

Figure 3: Scalability with respect to problem size of sample

sorting tntegers from the [U] benchmark, for differing num-

bers of processors, on the Cray T3D and the IBM SP-2-WN.

Table II examines the scalability of our sample sort as

a function of machine size. It shows that for a given input

size n the execution time scales almost inversely with the

number of processors p. Figure 3 examines the scalability of

I Random Sample Sorting of 8M Integers

Number of Processors I

Machine 8 16 32 64 128

Cray T3D 3.21 1.74 0.966 0.540 0.294

IBM SP2-WN ‘2.41 1.24 0.696 0.421 -

TMC CM-5 - 7.20 3.65 1.79 0.849

Table II: Total execution time (in seconds) for sorting 8M

integers from the [WR] benchmark on a variety of machines

and processors. A hyphen indicates that that particular

platform was unavailable to us.

our sample sort as a function of problem size, for differing

numbers of processors. It shows that for a fixed number of

processors there is an almost linear dependence between the

execution time and the total number of elements n. Finally,

Table III compares our results on the Class A NAS Bench-

mark for integer sorting (IS) with the best times reported

for the TMC CM-5 and the Cray T3D. Note that the name

of this benchmark is somewhat misleading. Instead of re-

quiring that the integers be placed in sorted order as we do,

the benchmark only requires that they be ranked without

any reordering, which is a significantly simpler task. We be-

lieve that our results, which were obtained using high-level,

portable code, compare favorably with the other reported

times, which were obtained by the vendors using machine-

specific implementations and perhaps system modifications.

Comparison of Class A NAS (IS) Benchmark Times]

Number Best I Our I
Machine I of Processors Reported Time Time

CM-5 3? 43.1 29.4

64 24.2 14.0

128 12.0 7.1:3

Cray T3D 16 7.07 1Q6

32 3.89 7.05

64 2.09 4.09

128 1.05 ~,~6
J)

Table III: Comparison of our execution time (in seconds)

with the best reported times for the Class A NAS Parallel

Benchmark for integer sorting. Note that while we actu-

ally place the integers in sorted order, the benchmark only

requires that they be ranked without actually reordering.

See [14] for additional performance data and comparisons

with other published results.

4.2 A New Sorting Algorithm by Regular

Sampling

A disadvantage of our random sample sort algorithm is that

the performance bounds and the memory requirements can

only be guaranteed with high probability. The alternative

to this is to choose the samples by regular sampling, A

previous version of regular sample sort [23, 19], known as

Parallel Sorting by Regular Sampling (PSRS), first sorts the

()

th

~ elements at each processor and then selects every
3

element as a sample. These samples are then routed to a

single processor, where they are sorted and every pth sam-

ple is selected as a splitter. Each processor then uses these

splitters to partition the sorted input values and then routes

the resulting subsequences to the appropriate destinations,

after which local merging is done to complete the sorting

process. The first difficulty with this approach is the load

balance. There exist inputs for which at least one

216

processor will be left at the completion of sorting with as

many as
()

2 ~ – ~ – p + 1 elements. This could be re-

duced by choosing more splitters, but this would also in-

crease the overhead. And no matter what is done, previous

workers have observed that the load balance would still de-

teriorate linearly with the number of duplicates [19]. The

other difficulty is that no matter how the routing is sched-

uled, there exist inputs that give rise to large variations in

the number of elements destined for different processors, and

this in turn results in an inefficient use of the communica-

tion bandwidth. Moreover, such an irregular communication

scheme cannot take advantage of the regular communication

primitives proposed under the MPI standard [20].

In our algorithm, which is parameterized by a sampling

()
ratio s p < s < ~ , we guarantee that at the completion

of sorting, each processor will have at most (~ + ~ – p) ele-

ments, while incurring no overhead in gathering the swrspJes

to identify the splitters. This bound holds regardless of the

number of duplicates present in the input. Moreover, we are

able to replace the irregular routing with exactly two calls

to our transpose primitive,

The pseudo code for our algorithm is as follows:

● Step (l): Each processor P, (O ~ i s p– 1) sorts each

of its ~ input values using an appropriate sequential

sorting algorithm. For integers we use the radix sort

algorithm, whereas for floating point numbers we use

the merge sort algorithm. The sorted data is then

“dealt” into p bins so that the k’k item in the sorted

order is placed into the 1~~ ‘h position of the (k mod

P)’h bin.

● Step (2): Each processor I+ routes the contents of

bin j to processor Pj, for (O < i, j < p – 1), which is

equivalent to performing a transpose operation with

block size ~.

● Step (3): From each of the p sorted subsequences re-

()

th

ceived in Step (2), processor Pp-l selects each k A

element as a sample, for (1 s k < s — 1), and a given

()
value ofs, for p<s<~ .

● Step (4): Processor Pp_I merges the p sorted subse-

quences of .sarnples and then selects each (ks)th sample

as a splitter, for (1 ~ k < p – 1). By default, the last

splitter is the largest value allowed by the data type

used. Additionally, binary search is used to compute

for the set of samples SAk with indices (k – 1)s through

(ks – 1) the number of samples Est[k] which share

the same value as Splitter[k]. Note that (Est[k] x :)

is an upper bound on the total number of duplicates

●

b

b

●

amongst the samples in SAk and the (f – 1) elements

which proceed each sample in the sorted order of Step

(l). After Step (2), the input is redistributed so

so that each processor holds between
(

Est[k] X A
)

()
and (Est[k] — 1) x A + 1 of those duplicates asso-

ciated with the set SAk in Step (l).

Step (5): Processor PP–I broadcasts the p spiitters

and their est values to the other p — I processors.

Step (6): Each processor P, uses binary search to

define for each of the p sorted sequences received in

Step (2) and each of the p splitters a subsequence

S[j,k). The p subsequences associated with Splitter[j]

all contain values which are greater than or equal to

Splitter[j – I] and and less then or equal to Splitter[j],

and collectively include at most
()

Est[j] x Y ele-

ments with the same value as Splitter[~].

Step (7): Each processor P, routes the p subsequences

associated with Splitterj to processor Pj, for (O ~

i, j < p — 1). Since no two processors will exchange

(
more than Q~z+~—l

)
elements, this is equivalent

to performing a transpose operation with block size

()
fi +:-1 .

Step (8): Each processor P, “unshuffled” all those

subsequences sharing a common origin in Step (2).

The p consolidated subsequences are then merged to

produce the ith column of the sorted array.

Before establishing the complexity of this algorithm, we

need the results of the following theorem, whose proof has

been omitted for brevity [15].

Theorem 2: The number of elements exchanged by any two

processors in Step (7) is at most
()

~+~–1 . Conse-

quently, at the completion of Step (7), no processor receives

more than (~ + ~ – p) elements, for n z p3.

Hence, the analysis of our regular sample sort algorithm

is similar to that of our sample sort algorithm and is given

(for floating point numbers) by

T(n, p) =O(; logn+r+;cr) (3)

()
forn~p3 and p~s~~.

217

Scalability in Machine & Problem Size
on the T3D (s = 8p)

10

ool~
51~K IM 8M

Total Nurnbe%’f Inte$rs [U]

1+8 +16+-32=64!
()

Scalability in Machine & Problem Size

~
51;K IM 2M 4M 8M

Total Number of Integers [U]

Figure 4: Scalability with respect to problem size of regular
sorting Integers from the [U] benchmark, for differing num-

bers o~ processors, on the Criy T3D and the IBM SP-2-WN.

Like our random sample sort algorithm, our regular sam-

ple sort algorithm is asymptotically optimal with very small

coefficients. Once again, our algorithm was implemented

and tested on the nine benchmarks. Table IV displays the

performance of our regular sort as a function of input dis-

tribution for a variety of input sizes. It shows that the

performance is essentially independent of the input distri-

bution. Table V examines the scalability of our regular sort

as a function of machine size. It shows that for a given in-

put size n the execution time scales almost inversely with

the number of processors p. Finally, Figure 4 examines the

scalability of our sample sort as a function of problem size,

for differing numbers of processors. They show that for a

fixed number of processors there is an almost linear depen-

Regular Sample Sorting of Integers, s = 8p

Sorting Benchmark

Benchmark lM 4M 16M 64M

[u] 0.114 0.355 1.17 4.42

[G] 0.114 0.341 1.16 4.38

0.0963 0.312 1.11 4.33

~4-Gj 0.0970 0.320 1.12 4.28

‘B- 0.117 0.352 1.17 4.35

[s- 0.0969 0.304 1.10 4.42

“z- 0.0874 0.273 0.963 3.75

[WR] 0.129 0.365 1.35 5.09

[RD] 0.0928 0.285 0.997 3.81

Table IV: Total execution time (in seconds) for regular sort-

ing a variety of benchmarks on a 64 node Cray T3D.

[Regular Sample Sorting of 8M Integers, s = 8P. [WR]

Number of Processors

Machine 8 16 32 64

Cray T3D 4.07 2.11 1.15 0.711

IBM SP2-WN 3.12 1.57 0.864

TMC CM-5 - 8.04 4.34 2.42

Table V: Total execution time (in seconds) for regular sort-

ing 8M tntege~s from the [WR] benchmark on a variety

of machines and processors. A hyphen indicates that that

particular platform was unavailable to us.

dence between the execution time and the total number of

elements n. See [15] for additional performance data and

comparisons with other published results.

4.3 An Efficient Radix Sort

We now consider the problem of sorting n integer keys in

the range [0, J!f – 1] that are distributed equally over a p-

processor distributed memory machine. An efficient and

well known stable algorithm is radix sort that decomposes

each key into groups of r-bit blocks, for a suitably chosen

T, and sorts the keys by sorting on each of the r-bit blocks

beginning with the block containing the least significant bit

positions. Here we only sketch the algorithm Counting

Sort for sorting on individual blocks.

The Counting Sort algorithm sorts n integers in the

range [0, R – I] by using R counters to accumulate the num-

ber of keys equal to t in bucket B,, for O < z < R – 1,

followed by determining the rank of the each element. Once

the rank of each element is known, we can use our h-relation

personalized communication to move each element into the

correct position; in this case h = ~. Counting Sort is a sta-

ble sorting routine, that is, if two keys are identical, their

relative order in the final sort remains the same as their

initial order.

The pseudocode for our Counting Sort algorithm uses six

major steps and is as follows.

218

Step (1): For each processor i, count the frequency

of its ~ keys; that is, compute l[z][k], the number of

keys equal to k, for (O ~ k < R– 1).

Step (2): Apply the transpose primitive to the 1

array using the block size ~. Hence, at the end of this

step, each processor will hold ~ consecutive rows of ~.

Step (3): Each processor locally computes the prefix-

sums of its rows of the array 1.

Step (4): Apply the (inverse) transpose primitive

to the R corresponding prefix-sums augmented by the

total count for each bin. The block size of the trans-

pose primitive is 2 ~.

Step (5): Each processor computes the ranks of local

elements.

Step (6): Perform a personalized communication of

keys to rank location using our h-relation algorithm

for h = ~.

Input, ~ SP-2 p = 16 CM-5 p = 32

[BHJI [B~Jl [BHJI I
(2S-2 p = 16 -

[AIS] [AIS] [AIS]

-~ , 4K 0.474 0.107 1.63 0.163 0.664 0.083

“R- , 64K 0.938 0.592 3.41 1.91 1.33 0.808

[- ‘R: , 512K 4.13 4.03 19.2 15.1 7.75 7.33

i ‘c’ , 4K 0.479 0.107 1.64 0.163 0.641 0.081

~ ‘c” “, 64K 0.958 0.584 3.31 1.89 1.23 0.790 -
[‘c” “, 512K 4.13 4.02 16.4 14.9 6.86 6.65

(‘N ‘, 4K 0.475 0.109 1.63 0.163 0.623 0.085

(‘N ‘, 64K 0.907 0.613 3.55 1.89 1.22 0.815 ‘

[[N ~, 512K 4.22 4.12 18.2 15.0 6.34 7.29

Table VI: Total execution time for radix sort on 32-bit inte-

gers (in seconds), comparing the AIS and our implementa-

tions.

Table VI presents a comparison of our radix sort with

another implementation of radix sort in SPLIT-C by Alexan-

drov et al. [1] This other implementation, which was tuned

for the Meiko CS-2, is identified the table as AIS, while our

algorithm is referred to as BHJ. The input [R] is random,

[C] is cyclically sorted, and [N] is a random Gaussian ap-

proximation [4]. Additional performance results are given

in Figure 5 and in [4].

References

[1] A. Alexandrov, M. Ionescu, K. Schauser, and

C. Scheiman. LogGP: Incorporating Long Messages

into the LogP Model - One step closer towards a re-

alistic model for parallel computation. In 7th Annual

ACM Symposium on Parallel Algorithms and Architec-

tures, pages 95-105, Santa Barbara, CA, July 1995.

Rad!xsort Scalablllty In Plachlne and Problem Size

on the T3D
10

@

El
c

!
256K 5 12K In 2M 4M

T.191Mumnw.1 K.ys

Rnd]xsort Scalability in Ilachme and Problem Size

0. the 5P-2
10,

1.’”””.
... —...-

P
~

❑
■ 4:1

z
Z38

■ 16

I
64K 128K 256K 512K lM 2M 4M

Total number01tQs

Figure 5: Scalability of radix sort with respect to machine

and problem size, on the Cray T3D and the IBM SP-2-TN

[2]

[3]

[4]

[5]

R.H. Arpaci, D.E. Culler, A. Krishnamurthy, S.G.

Steinberg, and K. Yelick. Empirical Evaluation of the

CRAY-T3D: A Compiler Perspective. In ACM Press,

editor, Proceedings of the 22nd Annual International

Symposium on Computer Architecture, pages 320-331,

Santa Margherita Ligure, Italy, June 1995.

D. Bader. Randomized and Deterministic Routing Al-

gorithms for h-Relations. ENEE 648X Class Report,

April 1, 1994.

D.A. Bader, D.R. Helman, and J. JiiJii. Practical Par-

allel Algorithms for Personalized Communication and

Integer Sorting. CS-TR-3548 and UMIACS-TR-95-101

Technical Report, UMIACS and Electrical Engineering,

University of Maryland, College Park, MD, November

1995. To appear in ACM Journal of Experimental Al-

gorithmic.

D.A. Bader and J. JiJ& Parallel Algorithms for Im-

age Histogramming and Connected Components with

219

an Experimental Study. In Fifth ACM SIGPLA N Sym-

posium of Principles and Practice of Parallel Program-

rnzng, pages 123–133, Santa Barbara, CA, July 1995.

TO appear in Journal of Parallel and Distributed Com-

puting.

[6] D.A. Bader and J. JtiJ& Practical Parallel Algorithms

for Dynamic Data Redistribution, Median Finding, and

Selection. Technical Report CS-TR-3494 and UMIACS-

TR-95-74, UMIACS and Electrical Engineering, Uni-

versity of Maryland, College Park, MD, July 1995. To

be presented at the 10th Internattoaal Parallel Process-

ing Symposzum, Honolulu, HI, April 15-19, 1996.

[7] V. Bala, J. Bruck, R. Cypher, P. Elustondo, A. Ho, C.-

T. Ho, S. Kipnis, and M. Snir. CCL: A Portable and

Tunable Collective Communication Library for Scalable

Parallel Computers. IEEE Transactions on Parallel and

Distributed Systems, 6:154-164, 1995.

[8] G.E. Blelloch, C.E. Leiserson, B.M. Maggs, C.G. Plax-

ton, S. J. Smith, and M. Zagha. A Comparison of Sort-

ing Algorithms for the Connection Machine CM-2. In

Proceedings of the ACM Symposium on Parallel Algo-

rithms and Architectures, pages 3–16, July 1991.

[9] W.W. Carlson and J.M. Draper. AC for the T3D. Tech-

nical Report SRC-TR-95-141, Supercomputing Re-

search Center, Bowie, MD, February 1995.

[10] Cray Research, Inc. SHMEM Techntcal Note for C,

October 1994. Revision 2.3.

[11] D.E. Culler, A. Dusseau, S.C. Goldstein, A. Krish-

namurthy, S. Lumetta, S. Luna, T. von Eicken, and

K. Yelick. Introduction to Split-C. Computer Science

Division - EECS, University of California, Berkeley, ver-

sion 1.0 edition, March 6, 1994.

[12] D.E. Culler, A.C. Dusseau, R.P. Martin, and K.E.

Schauser. Fast Parallel Sorting Under LogP: From The-

ory to Practice. In Portability and Performance for

Parallel Processing, chapter 4, pages 71-98. John Wi-

ley & Sons, 19934

[13] D.E. Culler, R.M. Karp, D.A. Patterson, A. Sahay,

K.E. Schauser, E. Santos, R. Subramonian, and T. von

Eicken. LogP: Towards a Realistic Model of Parallel

Computation. In Fourth ACM SIGPLAN Symposium

on Prtnczples and Practice of Parallel Programming,

May 1993.

[14] D.R. Helman, D.A. Bader, and J. JiJiL A Parallel Sort-

ing Algorithm With an Experimental Study. Technical

Report CS-TR-3549 and UMIACS-TR-95-102, UMI-

ACS and Electrical Engineering, University of Mary-

land, College Park, MD, December 1995.

[15] D.R. Helman, D.A. Bader, and J. JiJi. A Parallel Reg-

ular Sorting Algorithm With an Experimental Study.

Technical report, UMIACS and Electrical Engineering,

University of Maryland, College Park, MD, June 1996.

In Preparation.

[16] J.S. Huang and Y.C. Chow. Parallel Sorting and Data

Partitioning by Sampling. In Proceedings of the 7’th

Computer Software and Applications Conference, pages

627-631, November 1983.

[17] J.F. JiJa and K.W. Ryu. The Block Distributed Mem-

ory Model for Shared Memory Multiprocessors. In

Proceedings of the 8th International Parallel Process-

ing Symposturn, pages 752–756, Canctin, Mexico, April

1994. To appear in IEEE Transactions on Parallel and

Distributed Systems.

[18] M. Kaufmann, J.F. Sibeyn, and T. Suel. Derandom-

izing Algorithms for Routing and Sorting on Meshes.

In Proceedings of the 5th Sympostum on Discrete Algo-

rithms, pages 669–679. ACM-SIAM, 1994.

[19] X. Li, P. Lu, J. Schaeffer, J. Shillington, P.S. Wong,

and H. Shi. On the Versatility of Parallel Sorting by

Regular Sampling. Parallel Computing, 19:1079-1103,

1993.

[20] Message Passing Interface Forum. MPI: A Message-

Passing Interface Standard. Technical report, Univer-

sity of Tennessee, Knoxville, TN, June 1995. Version

.,
1.1.

[21] S. Ranka, R.V. Shankar, and K.A. Alsabti. Many-to-

many Personalized Communication with Bounded Traf-

fic. In The Ftfth Symposium on the Frontiers of Mas-

sively Parallel Computation, pages 20–27, McLean, VA,

February 1995.

[22] S. Rae, T, Suel, T. Tsantilas, and M. Goudreau. Effi-

cient Communication Using Total-Exchange. In l%-o-

ceedings of the 9th International Parallel Processing

Symposium, pages 544-550, Santa Barbara, CA, April

1995.

[23] H. Shi and J. Schaeffer. Parallel Sorting by Regular

Sampling. Journal of Parallel and Distributed Comput-

ing, 14:361–372, 1992.

[24] L.G. Valiant. A Bridging Model for Parallel Compu-

tation. Commurz2cat20ns of the ACM, 33(8):103-111,

1990.

220

A Sorting Benchmarks

Our nine sorting benchmarks are defined as follows, in which

MAX is (231 – 1) for integers and approximately 1.8x 1030s

for doubles:

1.

9~.

3.

4.

5.

6.

7.

Uniform [U], a uniformly distributed random input,

obtained by calling the C library random number gen-

erator rano!omo. This function, which returns inte-

gers in the range O to (23] – 1), is initialized by each

processor P, with the value (23+10012). For the double

data type, we “normalize” these values by first assign-

ing the integer returned by randomo a randomly cho-

MAXsen sign bit and then scaling the result by [~31 _l)

Gaussian [G], a Gaussian distributed random input,

approximated by adding four calls to randomo and

then dividing the result by four. For the double type,

we first normalize the values returned by random () in

the manner described for [U].

Zero [Z], a zero entropy input, created by setting ev-

ery value to a constant such as zero.

Bucket Sorted [B], an input that is sorted into p

buckets, obtained by setting the first ~ elements at

each processor to be random numbers between O and

(

MAX

)
— – 1 , the second ~ elements at each proces-

P

MAX and
sor to be random numbers between y

(

a MAX

)
— – 1 , and so forth.

P

g-Group [g-G], an input created by first dividing the

processors into groups of consecutive processors of size

g, where g can be any integer which partitions p evenly.

If we index these groups in consecutive order, then

for group j we set the first : elements to be ran-

dom numbers between ((jg + ~) mod p) ~ and

((())g + ~ + 1) modp) ~ – 1 , the second : el-

ements at each processor to be random numbers be-

tween ((jg + ~ + 1) mod p) ~ and

((()~g + ~ + 2) mod p) ~ – 1 , and so forth.

Staggered [S], created as follows: if the processor

index i is < ~, then we set all ~ elements at that pro-

cessor to be random numbers between (22 + 1) ~

(
and (2i+2) ~-I

)
, and so forth. Otherwise,

we set all ~ elements to be random numbers between

(i- ;) ~ and ((z-~ +1) ~ - 1), andso forth.

Worst-Case Regular [WR] - an input consisting

of values between O and MAX designed to induce the

8.

worst possible load balance at the completion of our

regular sorting. At the completion of sorting, the even-

indexed processors will hold (~ + ~ — p) elements,

whereas the odd-indexed processors will hold (~ – ~ +

p) elements. See [15] for additional details.

Randomized Duplicates [RD] an input of dupli-

cates in which each processor fills an array T with some

constant number range of random values between O

and (range — 1) (range is 32 for our work) whose sum

is S. The first ~ ~ values of the input are then set

to a random value between O and (range – 1), the

next m E~ ~ values of the input are then set to another

random value between O and (range – 1), and so forth.

We selected these nine benchmarks for a variety of rea-

sons. Previous researchers have used the Uniform, Gaus-

sian, and Zero benchmarks, and so we too included them

for purposes of comparison. But benchmarks should be de-

signed to illicit the worst case behavior from an algorithm,

and in this sense the Uniform benchmark is not appropri-

ate. For example, for n >> p, one would expect that the

optimal choice of the splztters in the Uniform benchmark

would be those which partition the range of possible values

into equal intervals. Thus, algorithms which try to guess the

splitters might perform misleadingly well on such an input.

In this respect, the Gaussian benchmark is more telling.

But we also wanted to find benchmarks which would evalu-

ate the cost of irregular communication. Thus, we wanted

to include benchmarks for which an algorithm which uses

a single phase of routing would find contention difficult or

even impossible to avoid. A naive approach to rearrang-

ing the data would perform poorly on the Bucket Sorted

benchmark. Here, every processor would try to route data

to the same processor at the same time, resulting in poor uti-

lization of communication bandwidth. This problem might

be avoided by an algorithm in which at each processor the

elements are first grouped by destination and then routed

according to the specifications of a sequence of p destina-

tion permutations. Perhaps the most straightforward way

to do this is by iterating over the possible communication

strides. But such a strategy would perform poorly with the

g-Group benchmark, for a suitably chosen value of g. In

this case, using stride iteration, those processors which be-

long to a particular group all route data to the same subset

of g destination processors. This subset of destinations is

selected so that, when the g processors route to this sub-

set, they choose the processors in exactly the same order,

producing contention and possibly stalling. Alternatively,

one can synchronize the processors after each permutation,

but this in turn will reduce the communication bandwidth

221

by a factor of ~. In the worst case scenario, each proces- Please see http: //waw. urniacs .mnd. edu/research/EXPAR

sor needs to send data to a single processor a unique stride foradditional performance information. In addition, all the

away. This is the case of the Staggered benchmark, and code used in this paper will be freely available for interested

the result is a reduction of the communication bandwidth by parties from our anonymous ftp site,

a factor of p. Of course, one can correctly object that both ftp://ftp. umiacs. urad. edu/pub/dbader. We encourage other

the g-Group benchmark and the Staggered benchmark researchers to compare with our results for similar inputs.

have been tailored to thwart a routing scheme which iter-

ates over the possible strides, and that another sequences of

permutations might be found which performs better. This is

possible, but at the same time we are unaware of any single

phase deterministic algorithm which could avoid an equiva-

lent challenge. The Worst Case Regular benchmark was

included to empirically evaluate both the worst case running

time expected for our regular sorting algorithm and the ef-

fect of the sampling rate on this performance. Finally, the

the Randomized Duplicates benchmark was included to

assess the performance of the algorithms in the presence of

duplicate values

B Acknowledgements

We would like to thank Ronald Greenberg of UMCP’S Elec-

trical Engineering Department for his valuable comments

and encouragement.

We would also like to thank the CASTLE/SPLIT-C group

at The University of California, Berkeley, especially for the

help and encouragement from David Culler, Arvind Krish-

namurthy, and Lok Tin Liu.

We acknowledge the use of the UMIACS 16-node IBM

SP-2-TN2, which was provided by an IBM Shared University

Research award and an NSF Academic Research Infrastruc-

ture Grant No. CDA9401151.

12 Arvind Krishnamurthy provided additional help with

his port of SPLIT-C to the Cray Research T3D [2]. The

Jet Propulsion Lab/Caltech 256-node Cray T3D Supercom-

puter used in this investigation was provided by funding

from the NASA Offices of Mission to Planet Earth, Aeronau-

tics, and Space Science. We also acknowledge William Carl-

son and Jesse Draper from the Center for Computing Science

(formerly Supercomputing Research Center) for writing the

parallel compiler AC (version 2.6) [9] on which the T3D port

of SPLIT-C has been based.

We also thank the Numerical Aerodynamic Simulation

Systems Division of the NASA Ames Research Center for

use of their 160-node IBM SP-2-WN.

This work also utilized the CM-5 at National Center

for Supercomputing Applications, University of Illinois at

Urbana-Champaign, under grant number ASC960008N.

222

