
Practical Parallel Algorithms for Dynamic Data Redistribution, Median Finding,
and Selection

(Extended Abstract)

David A. Bader* Joseph JAJJB'
Institute for Advanced Computer Studies, and

Department of Electrical Engineering,
University of Maryland, College Park, MD 20742

E-mail:{dbader, j o seph}@umiacs .umd .edu

Abstract

A common statistical problem is that of finding the me-
dian element in a set of data. This paper presents a fast and
portable parallel algorithm for finding the median given a
set of elements distributed across a parallel machine. In
fact, our algorithm solves the general selection problem
that requires the determination of the element of rank i, for
an arbitrarily given integer i. Practical algorithms needed
by our selection algorithm for the dynamic redistribution of
data are also discussed. Our general framework is a dis-
tributed memory programming model enhanced by a set of
communication primitives. We use eficient techniques for
distributing, coalescing, and load balancing data as well
as ejjicient combinations of task and data parallelism. The
algorithms have been coded in SPLIT-C and run on a variety
of platforms, including the Thinking Machines CM-5, IBM
SP-I and SP-2, Cray Research T3D, Meiko ScientiJic CS-2,
h e 1 Paragon, and workstation clusters. Our experimental
results illustrate the scalability and eficiency of our algo-
rithms across different platforms and improve upon all the
related experimental results known to the authors.

1. Problem Overview

Consider the problem of finding the median of a set of
rt elements that are spread across a p-processor distributed
memory machine, where n 2 p 2 ~ The median is typically
defined as the element that is the 50th quantile of a set, or
the element of rank after the data has been sorted in

'The support by NASA Graduate Student Researcher Fellowship

tSupported in part by NSF grant No. CCR-9103135 and NSF
No. NGT-5095 1 is gratefully acknowledged.

HPCUGCAG grant No. BIR-9318183.

1063-7133196 $5.00 0 1996 IEEE
Proceedings of IPPS '96

ascending order. A more general problem is that of selec-
tion; namely, we have to find the element of rank i, for a
given parameter i, 1 5 i 5 n. Parallel sorting trivially
solves the selection problem, but sorting is known to be
computationally harder than selection.

Previous parallel algorithms for selection (e.g., [lo, 20,
28,221) tend to be network dependent or assume the PRAM
model, and thus, are not efficient or portable to current
parallel machines. In this paper, we present algorithms that
are shown to be scalable and efficient across a number of
different platforms.

2. The Block Distributed Memory Model

We use the Block Distributed Memory (BDM) Model
([23, 241) as a computation model for developing and an-
alyzing our parallel algorithms on distributed memory ma-
chines. Each of our hardware platforms can be viewed as
a collection of powerful processors connected by a commu-
nication network that can be modeled as a complete graph
on which communication is subject to the restrictions im-
posed by the latency and the bandwidth properties of the
network. We view a parallel algorithm as a sequence of
local computations interleaved with communication steps,
and we allow computation and communication to overlap.
The complexity of parallel algorithms will be evaluated in
terms of two measures: the computation time Tcomp(n, p) ,

The communication time Tcomm(n,p) refers to the total
amount of communications time spent by the overall algo-
rithm in accessing remote data. The transfer of a block
consisting of m contiguous words between two processors,
assuming no congestion, takes T + rm time, where T is the
latency of the network and tr is the time per word at which
a processor can inject or receive data from the network. In
addition to the basic read and write primitives, we assume

and the communication time Tcomm(n, p) .

292

mailto:joseph}@umiacs.umd.edu

the existence of a collection of collective communication
primitives that include concat, transpose, prefix, reduce,
combine, gather, and scatter [2, 3,4, 51. A brief descrip-
tion of some of the primitives used by our algorithms are
as follows. The transpose primitive is an all-to-all per-
sonalized communication in which each processor has to
send a unique block of data to every processor, and all the
blocks are of the same size. The bcast primitive is called
to broadcast a block of data from a single source to all the
remaining processors. When an array is distributed among
the processors with a single element per processor, the con-
cat collective communication primitive creates a local copy
of this array on each processor, and the combine primitive
(along with an associative operator) provides each processor
with a local copy of the reduction of the distributed array.
The primitives gather and scatter are companion primitives
whereby scatter divides a single array residing on a proces-
sor into equal-sized blocks which are then distributed to the
remaining processors, and gather coalesces these blocks
residing on the different processors into a single array on
one processor. The cost of each collective communication
primitive will be modeled by T -k B max (m, p) , where m
is the maximum amount of data transmitted or received by
a processor. Our cost measure can be justified by using
our earlier work [23, 24, 2, 3, 41. Using this cost model,
we can evaluate the communication time Tcomm(n, jo) of an
algorithm as a function of the input size n, the number of
processors p , and the parameters r and U .

We define the computation time Tcomp (n , p) as the max-
imum time it takes a processor to perform all the lo-
cal computation steps. In general, the overall perfor-
mance Tcomp (n , p) + Tcom(n , p) involves a tradeoff between
Tcomm(n1p) and Tcomp(n,p>. Our aim is to develop parallel

algorithms that achieve Tcomp(n, p) = 0 - such that

Tcomm(nl p) is minimum, where Tseq is the complexity of the
best sequential algorithm. Such optimization has worked
very well for the problems we have looked at, but other
optimization criteria are possible. The important point to
notice is that, in addition to scalability, our optimization
criterion requires that the parallel algorithm be an efficient
sequential algorithm (i.e., the total number of operations of
the parallel algorithm is of the same order as Tseq).

(3)

2.1. Implementation Issues

The implementation of the collective communication
primitives presented in detail in [4] and listed above can
be achieved by library code which need use only the basic
read and write primitives. While we have developed our
own portable implementation of the primitives, para:llel ma-
chine vendors, realizing the importance of fast primitives
([9, 11, 26, 14]), have started to provide their own library

calls which benefit from knowledge of and access to lower
level machine specifics and optimizations.

Time for Transpose o f P x q elements

on e 16 node SP-2

1 W Vendor Prmntlve Library I
Generic Primitive Library

5 6 7 8 9 10 11 12 13 1 4 15 16 17

Figure 1. IPerformance of the transpose Com-
munication Primitive

For our purposes, communication primitives are consid-
ered to be a black box, where the implementation is unim-
portant from the user’s perspective, as long as the primitives
produce the correct results. Figure 1 provides an exam-
ple using the transpose primitive on the IBM SP-2. Note
that the “Vendor” primitive library corresponds to a prim-
itive function implemented directly on top of the respec-
tive collective icommunication library function provided by
IBM. The “Generic” primitive library uses our generic (and
portable) implementation which call only the read and write
primitives. Note that for both implementation methods, ex-
ecution time is similar, and making use of a vendor’s library
can improve performance.

3. Dynamic Redistribution of Data

The technique of dynamically redistributing data such
that each processor has a uniform workload is an essential
operation in many irregularproblems, such as computational
adaptive graph (grid) problems ([27, 16, 121) including finite
element calculations, molecular dynamics [21], particle dy-
namics [151, plasma particle-in-cell [171, raytraced volume
rendering [19], region growing and computer vision [30],
and statistical physics [8]. Here, the input is distributed
across p processors with a distribution that is irregular and

293

not known a priori. We present two methods for the dy-
namic redistribution of data which remap the data such that
no processor contains more than the average number of data
elements. The first method is similar to a method presented
in ([23,24]), and only a brief sketch will be given. The sec-
ond method, which is shown to be superior, will be presented
in greater detail.

3.1. Dynamic Data Redistribution: Method A

20

10

PO PI

2

0
~

14

6

P2 P3 P4 P5 P6

Figure 2. Example of Dynamic Data Redistri-
bution (Method A) with p = 8 and n = 63

A simple method for dynamic data redistribution ranks
each element in order across the p processors, and assigns
each set of g consecutively labeled elements to a processor,
where q = . Note that when p does not divide n evenly,
the last processor will receive less than q elements. We refer
to this as Method A.

Figure 2 shows a dynamic data redistribution example
for Method A. This is a simple example for 8 processors
and 63 elements, with an arbitrary initial distribution of
N = [lo, 3,2,20,0, l4 ,4 ,8] . Here, q j = = 8, for
0 5 j 5 4 , while 47 = I , since receives the remainder
of elements when p does not divide the total number of
elements evenly.

An algorithm for Method A first calls the concat com-
munication primitive and assigns it to array NI, a p x p
shared array. Another p x p shared array of prefix-sums of

the values from N , say PS, is derived simply from N j by
local running sum calculations. Thus, every processor con-
tains local copies of all prefix-sums. Suppose elements xe
logically ranked in consecutive order from 1 to n. In the fi-
nal layout, processor i will hold elements ranked from gi+]I
to g (i + I), inclusively. Using the prefix-sum information,
each processor easily determines where these elements are
located and issues read primitives for the respective remote
locations to fill the 14 x p distributed output array.

The analysis for the dynamic data redistribution algo-
rithm shows that [4]

L 1

(1)

Note that the input distribution N for dynamic data re-
distribution can range from already balanced data (N [i] =
m,b'i) to the case where all data is located on a single
processor (N [i] = N,i = i ' ;N[i] = 0,Vi # i'). For
a large class of irregular problems such that data are dis-
tributed with a certain class of distributions, it has been
shown that the distribution is typically closer to the first
scenario, (N [i] x m,Vi) [25].

T c o m m (n , P) L 27 + maxi{N[i]} + P ; { Z o m p (n , p) = o(maxi{N[iI}).

3.2. Dynamic Data Redistribution: Method B

Sources PO, P3, P5, PI

10

jBI 8

PO P1 P2 P3 P4 P5 P6 W

D: t2 -5 -6 t12 -8 t6 -2 t1

Figure 3. Example of Dynamic Data Redistri-
bution (Method B) with p = 8 and n = 63

A more efficient dynamic data redistribution algorithm,
here referred to as Method B, makes use of the fact that

294

a processor initially filled with at least q elements should
not need to receive any more elements, but insteadl, should
send its excess to other processors with less than q elements.
There are pathological cases for which Method A essentially
moves all the data, whereas Method B only moves a small
fraction. For example, if PO contains no elements, and PI
through Pp-2 each have q elements, with the remaining 2q
elements held by the last processor, Method A will left
shift all the data by one processor. However, Method B
substantially reduces the communication traffic by taking
only the q extra elements from Pp-l and sending them to
PO.

Dynamic data redistribution Method B calculates the
differential Dj of the number of elements on processor Pj
to the balanced level of q . If Dj is positive, Pj becomes
a source; and conversely, if Dj is negative, Pj becomes
a sink. The group of processors labeled as sources will
have their excess elements ranked consecutively, while the
processors labeled as sinks similarly will have their holes
ranked. Since the number of elements above the threshold
of q equals the number of holes below the threshold, there
is a one-to-one mapping of data which is used to send data
from a source to the respective holes held by sinks.

In addition to reduced communication, Method B per-
forms data remapping in-place, without the need for a sec-
ondary array of elements used to receive data, as in Method
A. Thus, Method B also has reduced memory requirements.

Figure 3 shows the same data redistribution example for
Method B. The heavy line drawn horizontally across the
elements represents the threshold q below which sinks have
holes and above which sources contain excess elements.
Note that Pp- 1 again holds the reminder of elements when
p does not divide the total number of elements evenly.

The SPMD algorithm for Method B is described below.
The following is run on processor j :

Algorithm 1 Parallel Dynamic Data Redistribution Algo-
rithm - Method B
Input:

{ j } is my processor number;
{ p } is the total number of processors, labeled from 0 to
p - 1;
{ A is the A4 x p input array of elements;
{ N 1 is the 1 x p input array of nj’s;

begin
1.
2.
3.

4.

N’ = concat(N);
Locally calculate the sum n =
Set q k =

~ [j l [i] ;
for 0 5 k 5 p - 2; and

q p - 1 = 12 - (q 0 * (p - 1)); (Pp- , receives the re-
mainder of elements when p does not evenly divide
n;>

Set D[k] = N’[j][k] - q k , for 0 5 k 5 p - 1;

(This is the differential of elements on Pk ;>

else SKC[k] = 8. for O 5 k 5 p - I ;

else SWK[k] = 0, for 0 5 k 5 p - 1;

Set SRCRANK[k] equal to the prefix sum of the
corresponding D[k] values;
(This ranks the excess elements;)

Set SMKRANK[kj equal to the prefix sum of the
corresponding -D[k] values;
(This ranks the holes for elements;)

9.1 Set l j = SRCRANKU] - DUI + 1;

9.2 Set rj = SRCRANK[Q];

9.3 Set sj = min (alSNK[a]A

5. I€ D[k] > 0 then SRC[k] = B

6. If D[k] <: 0 then SNK[k] = 1

7. Forall {kISRC[k]),

8. For all {kISNK[k]},

9. If SRC[j] then

(the rank of my first element;)

(tihe rank of my last element;)

113 / . < - SNK.RANK[a]) ; (the label of the pro-
cessor holding the hole with rank l j ;)

elements from Pj to
offset in A[sj][*] by N’[j][sj] -k

9.4 write min(SNK-RANK[sj], r j) excess

(2j - (SNK_RANK[sj] + D [s ~] + 1));
9.5 If F’j still contains excess elements then

9.5.1 Set t j = min {alSNK[a]A
(~ j 5 SNK.RANK[a]) } ; (the label of the
processor holding element with rank rj ;)

elements to all holes in A in processors
9.5.2 If t j > sj + 1, then write excess

§ j + 1 , . . . , k j - 1 ;

elements to Pi,, offset in A[tj][*] by
N‘ [jl 6t.i 1.

9.5.3 write the remaining excess

10. Update N [j] .
end

The analysis for Method B of the parallel dynamic data
redistribution algorithm is identical to that of Method A, and
is given in Eq. (1). Note that both methods have theoretically
similar complexity results, but Method B is superior in
practice for the reasons stated earlier.

Figure 4 shows the running time of Method B for dy-
namic data redistribution. The top plate contains results
from the SP-2, and the bottom from the Cray T3D. In the
five experiments, on the SP-2, the 8 node partition con-
tains n = 321’1- elements, and the 16 node partition contains
n = 64K elements. The T3D experiment also uses 16 nodes
and a total number of elements n = 3211 and 6411. Let j
represent the processor label, for 0 5 j 5 p - 1. Then the
five input distributions are defined as follows

Balanced: Each processor initially holds E elements

295

Dynamic Data Redistrlbution

on the IBN SP-2

20

E P - 8 d n - 3 2 K
E p = 1 6 md n - a K

lnDut Distribution o f Elements

IBM SP-2

Dynamic Data Redistribution

~1 a l e& CrayT3D

Bdmed Lmar Normal Eqxrmod Ft-

Input Distribution of Elements

Cray T3D

and hence m = E ; P

o Linear: Each processor initially holds j- ele-
ments and hence m = 224;

P

o Normal: Elements are distributedin a Gaussian curve1
and hence m M 2.4; for p 2 8;

Exponential: Pj contains fi elements, fos j # p - 1,
and Pp-1 contains & elements and hence rn = 5;

0 All-on-one: An arbitrary processor contains all n ele-
ments and hence m = n.

The complexity stated in Eq. (1) indicates that the amount
of local computation depends only on m (linearly) while the
amount of communication increases with both parameters
m and p . In particular, for fixed p and a specific machine, we
expect the total execution time to increase linearly with m.
The results shown in Figure4 confirm this latter observation.

Note that for the All-on-one input distribution, the dy-
namic data redistribution results in the same loading as
would calling a scatter primitive. In Figure 5 we compare
the dynamic data redistribution algorithm performance with
that of directly calling a scatter IBM communication primi-
tive on the IBM SP-2, and calling SHMEM primitives on the
Cray T3D. In this example, we have used from 2 to 64 wide
nodes of the SP-2 and 4 to 128 nodes of the T3D. Note that
the performance of our portable redistribution code is close
to the low-level vendor supplied communication primitive
for the scatter operation. As anticipated by the complex-
ity of our algorithm stated in Eq. (I), the communication
overhead increases with p .

Using this dynamic data redistribution algorithm, which
we call redist, we can now describe the parallel selection
algorithm.

4. Parallel Selection - Overview

The selection algorithm makes no initial assumptions
about the number of elements held by each processor, nor
the distribution of values on a single processor or across the
p processors. We define nj to be the number of elements
initially on processor j , for 0 5 j 5 p - 1, and hence the
total number n of elements is n =

The input is a shared memory array of elements AIO :
p- 13 [0 : M - I], and NIO : p- 11, where N [j] represents nj ,
the number of elements stored in Ab][*], and the selection
index i. Note that the median finding algorithm is a special

nj .

Figure 4. Dynamic Data Redistribution Al-
gorithms - Method B. The complexity of
our algorithm is essentially linear in m =
maxi { N [i] } . 'We sample a mean zero, s.d. one, Gaussian curve at the center of p

intervals equally spaced along [-3,3]. The sample values are normalized
to sum to n by multiplying each by

can be verified empirically.
sum of thpp samples' The Of

296

Comparison of Dynamic Data Redistribution YS. Scatter Primitives
v h e r e 128K elements are in i t ia l ly on a single processor

using the IBMSP-2
0.030

0.020
h

” v)

E .-
b

0.01 0

0.000

Dynamic Data Redistribution Plgorithm I

2 4 8 16 32 64

P

IBM SP-2

Comparison of Dynamic Data Redistribution vs. Scatter Primitives
v h e r e 128K elements a r e in i t ia l ly on a s ingle procc!ssor

using the Cray T3D
0.01 5

0.01 0
m

v
VI

e .-
I-

0.005

0.000

Dynamic Data Redistribution Plgorithm
Crav SHMEM Communication Primitive

4 8 16 32 64 128

P

Cray T3D

Figure 5. Comparison of redist vs.
Primitives

scatter

case of the selection problem where i is equal to [?I. The
output is the element from A with rank 2“.

The parallel selection algorithm is motivated by similar
sequential ([13, 291) and parallel ([1, 221) algorithms. We
use recursion, where at each stage, a “good” element from
the collection is chosen to split the input into two partitions,
one consisting of all elements less than or equal to the splitter
and the second consisting of the remaining elements. Sup-
pose there are t elements in the lower partition. If the value
of the selection index i is less than or equal to t , we recurse
on that lower partition with the same index. Otherwise, we
recurse on the higher partition looking for index i’ = i - t .

The choice of a good splitter is as follows. Each processor
finds tRe median of its local elements, and the median of
these p medians is chosen.

Since no assumptions are made about the initial distri-
bution of counts or values of elements before calling the
parallel selection algorithm, the input data can be heavily
skewed among the processors. We use a dynamic redistri-
bution technique which tries to equalize the amount of work
assigned to each processor.

4.1. Parallel Selection - Implementation and Anal-
ysis

We now present the parallel algorithm for selection, mak-
ing use of the Dynamic Data Redistribution algorithm given
in Section 3. The following is run on processor j :

Algorithm 2 Parallel Selection Algorithm

Block Distribu,ted Memory Model Algorithm.
Input:

{ j 1 is my processor number;
{ p
p - 1;
{ A } is the A4 x p input array of elements;
{ N } is the 1 x p input array of nj ’s;

is the total number ofprocessors, labeled from 0 to

begin
1. If n < p2 then

1.1 A’ := gather(A);
1.2 Processor 0 calls a sequential selection

1.3 Result = bast($).
algorithm to find z, the ith value of A’.

2. redist (A, N, p);
3. Radixsort local elements A[j][O : N [j] - 11,

and find the local median;
4. B = gather of the p median elements,

distributed one per processor;
5. Processor 0 calculates the median of the

medians m, and 5.1 2 = bast(m);
6. Each processor j finds the position k,

297

where k = maz{l lA[l , j] 5 z}, using the binary
search technique, and sets T [j] = k ;

(This returns the sum t =
ber of elements on the low side of the partition;)

algorithm is called recursively on the first k elements
held in A on each processor.
Otherwise, i > t , and selection is called recursively
on the last N [j] - k elements held in A on each
processor with the selection index i - k .

7. t = combine(T, +);
T[j] , i.e. the num-

8. If i 5 t , then N [j] = k and the selection

end

The analysis of the parallel selection algorithm shows
that [4]

T c o m m (n , P) 5 0 (r + p) l o g s + m) , n > p 2 ;

= 0 ; + m) ,
(2)

where m is defined in Eq. (1) to be maxj (W [j] } . the maxi-
mum number of elements initially on any of the processors.
For fixed p , the communication time increases linearly with
m and logarithmically with n, while the computation time
grows linearly with both m and n.

i Tcomp(n7 P) i

.

DB UB RB 0 1 6 U16 R16 D32 U32 R32 t S l 2 LlCel

Figure 6. Performance of Median Algorithm

The running time of the median algorithm on the TMC
CM-5 using both methods of dynamic data redistribution is
given in Figure 6. Similar results are given in Figure 7 for
the IBM SP-2. In all data sets, initial data is balanced.

4.2. Data Sets

The input sets are defined as follows. If the set's tag
ends with 8, 16, 32, 64, or 128, there are initially 8192,
16384, 32768, 65536, or 131072 elements per processor,
respectively. The values of these elements are chosen by

-
f
t-

nedian Algorithm Executlon Time

Usthod B for Dynank Data Rdiatr!butlon

on a 1 6 d e sP2

T m Spnt in Solecum kori thm
Tmc Spnt Fbrformw Data M s e r b u t m

08

06

04

02

D8 U8 U9 Dlb Ulb '1i6 D32 U32 U32 D64 U64 W D l 2 8 U128 R I 2 8
oc

Input Set o f Elements

Figure 7. Performance of Median Algorithm
on the SP-2

the method represented by the first letter. If the number of
elements per processor is q , and the processor is labeled j ,
f o r O s j s p - 1 , t h e n

0 D: Duplicate. Each processor holds the values [0, q -
11;

I) q - 11;
0 U: Unique. Each processor holds the values [j q , (j +

9 R: Random. Each processor holds uniformly random
values in the range [O, - 11.

The last two input sets correspond to an intermediate prob-
lem set from a computer vision algorithm for segmenting
images [5]. Set L512 (derived from band 5 of a 512 x 512
Landsat TM image) contains a total of 218 elements, which
is the same size as the input sets ending with tag 8 on a 32
processor machine. Set L 1024, with a total of 220 elements,
is derived from a similar 1024 x 1024 image, and has the
same number of elements as an input set ending with tag 32
on a 32 processor machine.

On the SP-2, results given in Figure 7 are only for
Method B, with each timing bar broken into two parts show-
ing the portion of the total running time spent performing
data redistribution versus the remaining selection time. As
these empirical data show, dynamic data redistribution is
only a small fraction of the total running time, which im-
plies that the data is fairly balanced after each iteration.
Also, in every case, Method B outperforms Method A.

298

................................

...
..............

...........................

......................

....................

0 1 2 3 4 5 6 7 B 9 1 0 1 1

it.lllll0"

IBM-SP2-WN

linear scale

8 2.40 '
16 1.17
4 4.05

Total number of candidale ~ I e m e n l s 81 Bach llsrallon

on * 32 DTOC@S*OT Cn-5. uniform random input dllrtrlbullon

loram0

....

1m

16
32
64

.
O I 2 3 1 5 6 7 E 9 1 0 1 1

1.01
0.571
0.367

11.ra11on

Cray T3D

log scale

J

4 7.05
8 3.55

Figure 8. Number of candidates per iteration

We benchmark our selection algorithm in Table I. The
input for this problem, taken from the NAS Parallel Bench-
mark for Integer Sorting [6], is 223 integers in the range
[0,2l9), spread out evenly across the processors. Each
key is the average of four consecutive uniformly distributed
pseudo-random numbers generated by the following recur-
rence:

xk+1 = azk(mod2 46 1

where a = 513 and the seed xo = 314159265. Thus, the
distribution of the key values is a Gaussian approximation.
On a p-processor machine, the first 3 generated k.eys are
assigned to PO, the next to P I , and so forth, until each
processor has keys.

The empirical results presented in Table I clearly show
that the selection algorithm is scalable with respect to ma-
chine size, since doubling the number of processors solves

Machine
IBM-SP2-TN2 I 4 I 4.88

I PE's I BDMSelection Algorithm 0

I t 8 1 1.98 H

16 I 1.81
32 I 0.929

0.483
0.275

Meiko CS-2 3.03

TMC CM-5 16 5.57
32 2.77

1 6 4 1 1.68

Table 1. Execution Times for the High-Leve!
BDM Selection (in seconds) on the NAS IS
input set

the problem in about half the time. This is consistent with
the BDM analysis given in Eq. (2). For n = 223 and machine
sizes typically in the order of tens or hundreds of processors,
computation dominates the selection algorithm, and execu-
tion time scales as i. (For verification, the median of the
NAS input set is 262198.) Our code for selection, written
in the high-level parallel language of SPLIT-C, is ported to
the parallel machines with absolutely no modifications to
the source code. Even without machine-specific (low-level)
code optimizalions that are typically needed for superior
parallel performance, we have an algorithm which performs
extremely well across a variety of current parallel machines
such as the Cray T3D, IBM SP-2, TMC CM-5, and Meiko
cs-2.

Next we compare our selection algorithm with that of
the trivial method of selection by parallel integer sorting
on the TMC CM-5. As shown in Table 11, our high-level
selection algorithm beats the fastest sorting results on the
CM-5 for the NAS input. Note that the algorithm in [7] is
machine-speciiic and does not actually result in a sorted list.

Figure 8 shows that the parallel selection algorithm for
R8, R16, and R32, reduces the candidate elements by ap-
proximately one-half during each successive iteration. In
this plot, p = 32; thus, when the data sets shrinks to a size
less than p2, i.e. smaller than 1024, a sequential algorithm
is employed to solve the corresponding selection problem.

299

Researchers

Bader & JAJA
Dusseau H81

Time (s) Notes

2.77 B D M Selection
7.67 Radix Sort

Table 11. Execution Time for Selection on a 32-
processor CM-5 on the NAS IS input set

- -
mc [71

5. Acknowledgements

J

4.31 Ranking without
permuting the data

We would like to thank the CASTLE/Split-C group at
U C Berkeley, especially for the help and encouragement
from David Culler, k v i n d Krishnamurthy, and Lok Tin
Liu. Computational support on U C Berkeley’s 64-processor
TMC CM-5 was provided by NSF Infrastructure Grant num-
ber CDA-8722788. We also thank Toby Harness and the
Numerical Aerodynamic Simulation Systems Division of
NASA’s Ames Research Center for use of their 160-node

Also, Klaus Schauser, Oscar Ibarra, and David Probert
of the University of California, Santa Barbara, provided ac-
cess to the UCSB 64-node Meiko CS-2. The Meiko CS-2
Computing Facility was acquired through NSF CISE Infras-
tructure Grant number CDA-9218202, with support from the
College of Engineering and the UCSB Office of Research,
for research in parallel computing.

The Jet Propulsion Lab/Caltech 256-node Cray T3D Su-
percomputer used in this investigation was provided by
funding from the NASA Offices of Mission to Planet Earth,
Aeronautics, and Space Science. Use of the University of
Alaska - Arctic Region Supercomputing Center’s 128-node
Cray T3D was supported by a grant from the Strategic En-
vironmental Research and Development Program under the
sponsorship of the U.S. Army Corps of Engineers, Water-
ways Experiment Station. The content of this paper does
not necessarily reflect the position or the policy of the gov-
ernment and no official endorsement should be inferred.

We acknowledge the use of the UMIACS 16-node IBM
SP-2-TN2, which was provided by an IBM Shared Uni-
versity Research award and an NSF Academic Research
Infrastructure Grant No. CDA940 1 15 1.

IBM SP-2-WN.

Please
see http://www.umiacs.umd.edu/-dbader for
additional performance information. In addition,
all the code used in this paper is freely available
for interested parties from our anonymous ftp site,
ftp://ftp.umiacs.umd.edu/pub/dbader. We
encourage other researchers to compare with our results for

similar inputs.

References

[l] S. Akl. The Design and Analysis of Parallel Algorithms.
Prentice-Hall, Inc., Englewood Cliffs, NJ, 1989.

[2] D. Bader and J. J&JJB. Parallel Algorithms for Image His-
togramming and Connected Components with an Experi-
mental Study. Technical Report CS-TR-3384 and UMIACS-
TR-94-133, UMIACS and Electrical Engineering, Univer-
sity of Maryland, College Park, MD, Dec. 1994. To appear
in Journal of Parallel and Distributed Computing.

[3] D. Bader and J. J&J& Parallel Algorithms for Image His-
togramming and Connected Components with an Experi-
mental Study. In Fifh ACMSIGPLAiVSymposiumof Princi-
ples and Practice of Parallel Programming, pages 123-1 33,
Santa Barbara, CA, July 1995.

[4] D. Bader and J. JaJB. Practical Parallel Algorithms for
Dynamic Data Redistribution, Median Finding, and Se-
lection. Technical Report CS-TR-3494 and UMIACS-TR-
95-74, UMIACS and Electrical Engineering, University of
Maryland, College Park, MD, July 1995. To be presented
at the 10th International Parallel Processing Symposium,
Honolulu, HI, April 15-19, 1996.

[5] D. Bader, J. J&J& D. Hanvood, and L. Davis. Parallel Algo-
rithms for Image Enhancement and Segmentation by Region
Growing with an Experimental Study. Technical Report CS-
TR-3449 and UMIACS-TR-95-44, Institute for Advanced
Computer Studies (UMIACS), University of Maryland, Col-
lege Park, MD, May 1995. To be presented at the 10th In-
ternational Parallel Processing Symposium, Honolulu, HI,

[6] D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter,
L. Dagum, R. Fatoohi, S. Fineberg, P. Frederickson, T. Lasin-
ski, R. Schreiber, H. Simon, V. Venkatakrishnan, and
S. Weeratunga. The NAS Parallel Benchmarks. Technical
Report RNR-94-007, Numerical Aerodynamic Simulation
Facility, NASA Ames Research Center, Moffett Field, CA,
March 1994.

[7] B. Bailey, E. Barszcz, L. Dagum, and H. Simon. NAS
Parallel Benchmark Results 10-94. Report NAS-94-001,
Numerical Aerodynamic Simulation Facility, NASA Ames
Research Center, Moffett Field, CA, October 1994.

[8] C. Baillie and P. Coddington. Cluster Identification Algo-
rithms for Spin Models - Sequential and Parallel. Concur-
rency: Practice and Experience, 3(2):129-144, 1991.

[9] V. Bala, J. Bruck, R. Cypher, P. Elustondo, A. Ho, C.-T. Ho,
S. Kipnis, andM. Snir. CCL: A Portable andTunableCollec-
tive Communication Library for Scalable Parallel Comput-
ers. IEEE Transactions on Parallel and Distributed Systems,
6:154-164,1995.

[lo] P. Berthom6, A. Ferreira, B. Maggs, S. Perennes,and C. Plax-
ton. Sorting-Based Selection Algorithms for Hypercubic
Networks. In Proceedings of the 7th International Parallel
Processing Symposium, pages 89-95, Newport Beach, CA,
April 1993. IEEE Computer Society Press.

April 15-19, 1996.

300

http://www.umiacs.umd.edu/-dbader
ftp://ftp.umiacs.umd.edu/pub/dbader

[l l] J. Bruck, C.-T. Ho, S. Kipnis, and D. Weathersby. Effi-
cient Algorithms for All-to-All Communications in Multi-
Port Message-Passing Systems. In 6th Annual ACM Sym-
posium on Parallel Algorithms and Architectures, volume 6,
pages 298-309, Cape May, NJ, June 1994. ACM Press.

[12] A. Choudhary, G. Fox, S . Ranka, S . Hiranandani,
K. Kennedy, C. Koelbel, and J. Saltz. Software Support
for Irregular and Loosely Synchronous Problems. Interna-
tional Journal of Computing Systems in Engineering, 3(l -4),
1992.

[13] T. Cormen, C. Leiserson, and R. Rivest. Introduction to
Algorithms. MIT Press, Cambridge, MA, 1990.

[14] Cray Research, Inc. SHMEM Technical Note for C, October
1994. Revision 2.3.

[151 L. Dagum. Three-Dimensional Direct Particle Simulation
on the Connection Machine. RNR Technical Report RNR-
91-022, NASA Ames, NAS Division, August 1991.

[16] J. De Keyser and D. Roose. Load Balacing Data Paral-
lel Programs on Distributed Memory Computers. Parallel
Computing, 19:1199-1219,1993.

[17] K. Dincer. Particle-in-cell simulation codes in High Per-
formance Fortran. Report SCCS-663, Northeast Parallel
Architectures Center, Syracuse University, Syracuse, NY,
November 1994.

[I81 A. Dusseau. Modeling Parallel Sorts with LogP on the CM-
5. Technical Report UCB//CSD-94-829, Computer Science
Division, University of Califomia, Berkeley, 1994.

[19] S . Goil and S. Ranka. Dynamic Load Balancing for Ray-
traced Volume Rendering on Distributed Memory Machines.
Report SCCS-693, Northeast Parallel Architectures Center,
Syracuse University, Syracuse, NY, February 1995.

[203 E. Hao, P. MacKenzie, and Q. Stout. Selection on the Recon-
figurable Mesh. In Proceedings of the 4th Symposium on the
Frontiers of Massively Parallel Computation, pages 3845,
McLean, VA, October 1992. IEEE Computer Society Press.

[21] Y.-S. Hwang, R. Das, J. Saltz, B. Brooks, and M. Hodoscek.
Parallelizing Molecular Dynamics Programs for Distributed
Memory Machines: An Application of the CHAOS Run-
time Support Library. Technical Report CS-TR-3374 and
UMIACS-TR-94-125, Department of Computer Science and
UMIACS, Univ. of Maryland, 1994.

[22] J. J6JS1. An Introduction to Parallel Algorithms. Addison-
Wesley Publishing Company, New York, 1992.

[23] 9. J6JJg and K. Ryu. The Block Distributed Memory Model.
Technical Report CS-TR-3207, Computer Science Depart-
ment, University of Maryland, College Park, January 1994.
To appear in IEEE Transactions on Parallel and Distributed
Systems.

1241 J. JUS1 and K. Ryu. The Block Distributed Memory Model for
Shared Memory Multiprocessors. In Proceedings of the 8th
International Parallel Processing Symposium, pages 752-
756, Canclin, Mexico, April 1994. (Extended Abstract).

[25] K. Mehrotra, S . Ranka, and J.-C. Wang. A Probabilistilc Anal-
ysis of a Locality Maintaining Load Balancing Algorithm.
In Proceedings of the 7th International Parallel Process-
ing Symposium, pages 369-373, Newport Beach, CA., April
1993. IEEE Computer Society Press.

[26] Message Passing Interface Forum. MPI: A Message-Passing
Interface Standard. Technical Report CS-94-230, University
of Tennessee, Knoxville, TN, May 1994. Version 1 .O.

[27] C.-W. Qu and S. Ranka. Parallel Remapping Algorithms for
Adaptive Problems. In Proceedingsof the 5th Symposium on
the Frontiers of Massively Parallel Computation, pages 367-
374, McLean, VA, February 1995. IEEE Computer Society
Press.

1281 W. Samath and X. He. Efficient parallel algorithms for se-
lection and searching on sorted matrices. In Proceedings of
the 6th International Parallel Processing Symposium, pages
108-1 11, Beverly Hills, CA, March 1992. IEEE Computer
Society Press.

[29] R. Sedgewick. Algorithms. Addison-Wesley, Reading, MA,
1988.

[30] C. Weems, E. Riseman, A. Hanson, and A. Rosenfeld. The
DARPA Image Understanding Benchmark for Parallel Com-
puters. Jaurnal of Parallel and Distributed Computing,
11:1-24,1991.

301

