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Abstract 

A common statistical problem is that of finding the me- 
dian element in a set of data. This paper presents a fast and 
portable parallel algorithm for finding the median given a 
set of elements distributed across a parallel machine. In 
fact, our algorithm solves the general selection problem 
that requires the determination of the element of rank i, for 
an arbitrarily given integer i. Practical algorithms needed 
by our selection algorithm for the dynamic redistribution of 
data are also discussed. Our general framework is a dis- 
tributed memory programming model enhanced by a set of 
communication primitives. We use eficient techniques for 
distributing, coalescing, and load balancing data as well 
as ejjicient combinations of task and data parallelism. The 
algorithms have been coded in SPLIT-C and run on a variety 
of platforms, including the Thinking Machines CM-5, IBM 
SP-I and SP-2, Cray Research T3D, Meiko ScientiJic CS-2, 
h e 1  Paragon, and workstation clusters. Our experimental 
results illustrate the scalability and eficiency of our algo- 
rithms across different platforms and improve upon all the 
related experimental results known to the authors. 

1. Problem Overview 

Consider the problem of finding the median of a set of 
rt elements that are spread across a p-processor distributed 
memory machine, where n 2 p 2 ~  The median is typically 
defined as the element that is the 50th quantile of a set, or 
the element of rank after the data has been sorted in 
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ascending order. A more general problem is that of selec- 
tion; namely, we have to find the element of rank i, for a 
given parameter i, 1 5 i 5 n. Parallel sorting trivially 
solves the selection problem, but sorting is known to be 
computationally harder than selection. 

Previous parallel algorithms for selection (e.g., [lo, 20, 
28,221) tend to be network dependent or assume the PRAM 
model, and thus, are not efficient or portable to current 
parallel machines. In this paper, we present algorithms that 
are shown to be scalable and efficient across a number of 
different platforms. 

2. The Block Distributed Memory Model 

We use the Block Distributed Memory (BDM) Model 
([23, 241) as a computation model for developing and an- 
alyzing our parallel algorithms on distributed memory ma- 
chines. Each of our hardware platforms can be viewed as 
a collection of powerful processors connected by a commu- 
nication network that can be modeled as a complete graph 
on which communication is subject to the restrictions im- 
posed by the latency and the bandwidth properties of the 
network. We view a parallel algorithm as a sequence of 
local computations interleaved with communication steps, 
and we allow computation and communication to overlap. 
The complexity of parallel algorithms will be evaluated in 
terms of two measures: the computation time Tcomp(n, p ) ,  

The communication time Tcomm(n,p) refers to the total 
amount of communications time spent by the overall algo- 
rithm in accessing remote data. The transfer of a block 
consisting of m contiguous words between two processors, 
assuming no congestion, takes T + rm time, where T is the 
latency of the network and tr is the time per word at which 
a processor can inject or receive data from the network. In 
addition to the basic read and write primitives, we assume 

and the communication time Tcomm(n, p ) .  
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the existence of a collection of collective communication 
primitives that include concat, transpose, prefix, reduce, 
combine, gather, and scatter [2, 3,4,  51. A brief descrip- 
tion of some of the primitives used by our algorithms are 
as follows. The transpose primitive is an all-to-all per- 
sonalized communication in which each processor has to 
send a unique block of data to every processor, and all the 
blocks are of the same size. The bcast primitive is called 
to broadcast a block of data from a single source to all the 
remaining processors. When an array is distributed among 
the processors with a single element per processor, the con- 
cat collective communication primitive creates a local copy 
of this array on each processor, and the combine primitive 
(along with an associative operator) provides each processor 
with a local copy of the reduction of the distributed array. 
The primitives gather and scatter are companion primitives 
whereby scatter divides a single array residing on a proces- 
sor into equal-sized blocks which are then distributed to the 
remaining processors, and gather coalesces these blocks 
residing on the different processors into a single array on 
one processor. The cost of each collective communication 
primitive will be modeled by T -k B max (m, p ) ,  where m 
is the maximum amount of data transmitted or received by 
a processor. Our cost measure can be justified by using 
our earlier work [23, 24, 2, 3, 41. Using this cost model, 
we can evaluate the communication time Tcomm(n, jo) of an 
algorithm as a function of the input size n, the number of 
processors p ,  and the parameters r and U .  

We define the computation time Tcomp ( n ,  p )  as the max- 
imum time it takes a processor to perform all the lo- 
cal computation steps. In general, the overall perfor- 
mance Tcomp ( n  , p )  + Tcom( n , p )  involves a tradeoff between 
Tcomm(n1p) and Tcomp(n,p>.  Our aim is to develop parallel 

algorithms that achieve Tcomp(n, p )  = 0 - such that 

Tcomm(nl p )  is minimum, where Tseq is the complexity of the 
best sequential algorithm. Such optimization has worked 
very well for the problems we have looked at, but other 
optimization criteria are possible. The important point to 
notice is that, in addition to scalability, our optimization 
criterion requires that the parallel algorithm be an efficient 
sequential algorithm (i.e., the total number of operations of 
the parallel algorithm is of the same order as Tseq). 

(3) 

2.1. Implementation Issues 

The implementation of the collective communication 
primitives presented in detail in [4] and listed above can 
be achieved by library code which need use only the basic 
read and write primitives. While we have developed our 
own portable implementation of the primitives, para:llel ma- 
chine vendors, realizing the importance of fast primitives 
([9, 11, 26, 14]), have started to provide their own library 

calls which benefit from knowledge of and access to lower 
level machine specifics and optimizations. 

Time for  Transpose o f  P x q elements 

on e 16 node SP-2 

1 W Vendor Prmntlve Library I 
Generic Primitive Library 

5 6 7 8 9 10 11 12 13 1 4  15 16 17 

Figure 1. IPerformance of the transpose Com- 
munication Primitive 

For our purposes, communication primitives are consid- 
ered to be a black box, where the implementation is unim- 
portant from the user’s perspective, as long as the primitives 
produce the correct results. Figure 1 provides an exam- 
ple using the transpose primitive on the IBM SP-2. Note 
that the “Vendor” primitive library corresponds to a prim- 
itive function implemented directly on top of the respec- 
tive collective icommunication library function provided by 
IBM. The “Generic” primitive library uses our generic (and 
portable) implementation which call only the read and write 
primitives. Note that for both implementation methods, ex- 
ecution time is similar, and making use of a vendor’s library 
can improve performance. 

3. Dynamic Redistribution of Data 

The technique of dynamically redistributing data such 
that each processor has a uniform workload is an essential 
operation in many irregularproblems, such as computational 
adaptive graph (grid) problems ([27, 16, 121) including finite 
element calculations, molecular dynamics [21], particle dy- 
namics [ 151, plasma particle-in-cell [ 171, raytraced volume 
rendering [19], region growing and computer vision [30], 
and statistical physics [8]. Here, the input is distributed 
across p processors with a distribution that is irregular and 
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not known a priori. We present two methods for the dy- 
namic redistribution of data which remap the data such that 
no processor contains more than the average number of data 
elements. The first method is similar to a method presented 
in ([23,24]), and only a brief sketch will be given. The sec- 
ond method, which is shown to be superior, will be presented 
in greater detail. 

3.1. Dynamic Data Redistribution: Method A 

20 

10 

PO PI 

2 

0 
~ 

14 

6 

P2 P3 P4 P5 P6 

Figure 2. Example of Dynamic Data Redistri- 
bution (Method A) with p = 8 and n = 63 

A simple method for dynamic data redistribution ranks 
each element in order across the p processors, and assigns 
each set of g consecutively labeled elements to a processor, 
where q = . Note that when p does not divide n evenly, 
the last processor will receive less than q elements. We refer 
to this as Method A. 

Figure 2 shows a dynamic data redistribution example 
for Method A. This is a simple example for 8 processors 
and 63 elements, with an arbitrary initial distribution of 
N = [lo, 3,2,20,0,  l4 ,4 ,8] .  Here, q j  = = 8, for 
0 5 j 5 4 ,  while 47 = I ,  since receives the remainder 
of elements when p does not divide the total number of 
elements evenly. 

An algorithm for Method A first calls the concat com- 
munication primitive and assigns it to array NI, a p x p 
shared array. Another p x p shared array of prefix-sums of 

the values from N ,  say PS,  is derived simply from N j  by 
local running sum calculations. Thus, every processor con- 
tains local copies of all prefix-sums. Suppose elements xe 
logically ranked in consecutive order from 1 to n. In the fi- 
nal layout, processor i will hold elements ranked from gi+ ]I 
to g ( i  + I), inclusively. Using the prefix-sum information, 
each processor easily determines where these elements are 
located and issues read primitives for the respective remote 
locations to fill the 14 x p distributed output array. 

The analysis for the dynamic data redistribution algo- 
rithm shows that [4] 

L 1 

(1) 

Note that the input distribution N for dynamic data re- 
distribution can range from already balanced data ( N [ i ]  = 
m,b'i) to the case where all data is located on a single 
processor ( N [ i ]  = N,i = i ' ;N[ i ]  = 0,Vi  # i'). For 
a large class of irregular problems such that data are dis- 
tributed with a certain class of distributions, it has been 
shown that the distribution is typically closer to the first 
scenario, ( N [ i ]  x m,Vi) [25]. 

T c o m m ( n , P )  L 27 + maxi{N[i]} + P ;  { Z o m p ( n , p )  = o(maxi{N[iI}). 

3.2. Dynamic Data Redistribution: Method B 

Sources PO, P3, P5, PI 

10 

jBI 8 

PO P1 P2 P3 P4 P5 P6 W 

D: t2 -5 -6 t12 -8 t6 -2 t1 

Figure 3. Example of Dynamic Data Redistri- 
bution (Method B) with p = 8 and n = 63 

A more efficient dynamic data redistribution algorithm, 
here referred to as Method B, makes use of the fact that 
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a processor initially filled with at least q elements should 
not need to receive any more elements, but insteadl, should 
send its excess to other processors with less than q elements. 
There are pathological cases for which Method A essentially 
moves all the data, whereas Method B only moves a small 
fraction. For example, if PO contains no elements, and PI 
through Pp-2 each have q elements, with the remaining 2q 
elements held by the last processor, Method A will left 
shift all the data by one processor. However, Method B 
substantially reduces the communication traffic by taking 
only the q extra elements from Pp-l and sending them to 
PO. 

Dynamic data redistribution Method B calculates the 
differential Dj of the number of elements on processor Pj 
to the balanced level of q .  If Dj is positive, Pj becomes 
a source; and conversely, if Dj is negative, Pj becomes 
a sink. The group of processors labeled as sources will 
have their excess elements ranked consecutively, while the 
processors labeled as sinks similarly will have their holes 
ranked. Since the number of elements above the threshold 
of q equals the number of holes below the threshold, there 
is a one-to-one mapping of data which is used to send data 
from a source to the respective holes held by sinks. 

In addition to reduced communication, Method B per- 
forms data remapping in-place, without the need for a sec- 
ondary array of elements used to receive data, as in Method 
A. Thus, Method B also has reduced memory requirements. 

Figure 3 shows the same data redistribution example for 
Method B. The heavy line drawn horizontally across the 
elements represents the threshold q below which sinks have 
holes and above which sources contain excess elements. 
Note that Pp- 1 again holds the reminder of elements when 
p does not divide the total number of elements evenly. 

The SPMD algorithm for Method B is described below. 
The following is run on processor j :  

Algorithm 1 Parallel Dynamic Data Redistribution Algo- 
rithm - Method B 
Input: 

{ j } is my processor number; 
{ p } is the total number of processors, labeled from 0 to 
p -  1; 
{ A is the A4 x p input array of elements; 
{ N 1 is the 1 x p input array of nj’s; 

begin 
1. 
2. 
3. 

4. 

N’ = concat(N); 
Locally calculate the sum n = 
Set q k  = 

~ [ j l  [i] ; 
for 0 5 k 5 p - 2; and 

q p - 1  = 12 - ( q  0 * ( p  - 1)); (Pp- ,  receives the re- 
mainder of elements when p does not evenly divide 
n;> 

Set D[k] = N’[j][k] - q k ,  for 0 5 k 5 p - 1;  

(This is the differential of elements on Pk ;> 

else SKC[k] = 8. for O 5 k 5 p - I ;  

else SWK[k] = 0, for 0 5 k 5 p - 1; 

Set SRCRANK[k] equal to the prefix sum of the 
corresponding D[k] values; 
(This ranks the excess elements;) 

Set SMKRANK[kj equal to the prefix sum of the 
corresponding -D[k] values; 
(This ranks the holes for elements;) 

9.1 Set l j  = SRCRANKU] - DUI + 1; 

9.2 Set rj = SRCRANK[Q]; 

9.3 Set sj = min (alSNK[a]A 

5. I€ D[k]  > 0 then SRC[k] = B 

6. If D[k]  <: 0 then SNK[k] = 1 

7. Forall {kISRC[k]), 

8. For all {kISNK[k]}, 

9. If SRC[j] then 

(the rank of my first element;) 

(tihe rank of my last element;) 

113 / .  < - SNK.RANK[a]) ; (the label of the pro- 
cessor holding the hole with rank l j  ;) 

elements from Pj to 
offset in A[sj][*] by N’[j][sj] -k 

9.4 write min(SNK-RANK[sj], r j )  excess 

(2j - (SNK_RANK[sj] + D [ s ~ ]  + 1)); 
9.5 If F’j still contains excess elements then 

9.5.1 Set t j  = min {alSNK[a]A 
( ~ j  5 SNK.RANK[a]) } ; (the label of the 
processor holding element with rank rj ;) 

elements to all holes in A in processors 
9.5.2 If t j  > sj + 1, then write excess 

§ j + 1 ,  . . . ,  k j - 1 ;  

elements to Pi,, offset in A[tj][*] by 
N‘ [jl 6t.i 1. 

9.5.3 write the remaining excess 

10. Update N [ j ] .  
end 

The analysis for Method B of the parallel dynamic data 
redistribution algorithm is identical to that of Method A, and 
is given in Eq. (1). Note that both methods have theoretically 
similar complexity results, but Method B is superior in 
practice for the reasons stated earlier. 

Figure 4 shows the running time of Method B for dy- 
namic data redistribution. The top plate contains results 
from the SP-2, and the bottom from the Cray T3D. In the 
five experiments, on the SP-2, the 8 node partition con- 
tains n = 321’1- elements, and the 16 node partition contains 
n = 64K elements. The T3D experiment also uses 16 nodes 
and a total number of elements n = 3211 and 6411. Let j 
represent the processor label, for 0 5 j 5 p - 1. Then the 
five input distributions are defined as follows 

Balanced: Each processor initially holds E elements 
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Dynamic Data Redistrlbution 

on the IBN SP-2 

20 

E P -  8 d n - 3 2 K  
E p = 1 6  md n - a K  

lnDut Distribution o f  Elements 

IBM SP-2 

Dynamic Data Redistribution 

~1 a l e& CrayT3D 

Bdmed Lmar Normal Eqxrmod Ft- 

Input Distribution of Elements 

Cray T3D 

and hence m = E ;  P 

o Linear: Each processor initially holds j- ele- 
ments and hence m = 224; 

P 

o Normal: Elements are distributedin a Gaussian curve1 
and hence m M 2.4; for p 2 8; 

Exponential: Pj contains fi elements, fos j  # p -  1, 
and Pp-1 contains & elements and hence rn = 5; 

0 All-on-one: An arbitrary processor contains all n ele- 
ments and hence m = n. 

The complexity stated in Eq. (1) indicates that the amount 
of local computation depends only on m (linearly) while the 
amount of communication increases with both parameters 
m and p .  In particular, for fixed p and a specific machine, we 
expect the total execution time to increase linearly with m. 
The results shown in Figure4 confirm this latter observation. 

Note that for the All-on-one input distribution, the dy- 
namic data redistribution results in the same loading as 
would calling a scatter primitive. In Figure 5 we compare 
the dynamic data redistribution algorithm performance with 
that of directly calling a scatter IBM communication primi- 
tive on the IBM SP-2, and calling SHMEM primitives on the 
Cray T3D. In this example, we have used from 2 to 64 wide 
nodes of the SP-2 and 4 to 128 nodes of the T3D. Note that 
the performance of our portable redistribution code is close 
to the low-level vendor supplied communication primitive 
for the scatter operation. As anticipated by the complex- 
ity of our algorithm stated in Eq. (I), the communication 
overhead increases with p .  

Using this dynamic data redistribution algorithm, which 
we call redist, we can now describe the parallel selection 
algorithm. 

4. Parallel Selection - Overview 

The selection algorithm makes no initial assumptions 
about the number of elements held by each processor, nor 
the distribution of values on a single processor or across the 
p processors. We define nj to be the number of elements 
initially on processor j ,  for 0 5 j 5 p - 1, and hence the 
total number n of elements is n = 

The input is a shared memory array of elements AIO : 
p-  13 [0 : M -  I], and NIO : p-  11, where N [ j ]  represents nj , 
the number of elements stored in Ab][*],  and the selection 
index i. Note that the median finding algorithm is a special 

nj . 

Figure 4. Dynamic Data Redistribution Al- 
gorithms - Method B. The complexity of 
our algorithm is essentially linear in m = 
maxi { N [i] } . 'We sample a mean zero, s.d. one, Gaussian curve at the center of p 

intervals equally spaced along [-3,3]. The sample values are normalized 
to sum to n by multiplying each by 

can be verified empirically. 
sum of thpp samples' The Of 
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Comparison of Dynamic Data Redistribution YS. Scatter Primitives 
v h e r e  128K elements are  in i t ia l ly  on a single processor 

using the IBMSP-2 
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Dynamic Data Redistribution Plgorithm I 

2 4 8 16 32 64 
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IBM SP-2 

Comparison of Dynamic Data Redistribution vs. Scatter Primitives 
v h e r e  128K elements a r e  in i t ia l ly  on a s ingle  procc!ssor 

using the Cray T3D 
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Dynamic Data Redistribution Plgorithm 
Crav SHMEM Communication Primitive 

4 8 16 32 64 128 

P 

Cray T3D 

Figure 5. Comparison of redist vs. 
Primitives 

scatter 

case of the selection problem where i is equal to [?I. The 
output is the element from A with rank 2“. 

The parallel selection algorithm is motivated by similar 
sequential ([ 13, 291) and parallel ([ 1, 221) algorithms. We 
use recursion, where at each stage, a “good” element from 
the collection is chosen to split the input into two partitions, 
one consisting of all elements less than or equal to the splitter 
and the second consisting of the remaining elements. Sup- 
pose there are t elements in the lower partition. If the value 
of the selection index i is less than or equal to t ,  we recurse 
on that lower partition with the same index. Otherwise, we 
recurse on the higher partition looking for index i’ = i - t .  

The choice of a good splitter is as follows. Each processor 
finds tRe median of its local elements, and the median of 
these p medians is chosen. 

Since no assumptions are made about the initial distri- 
bution of counts or values of elements before calling the 
parallel selection algorithm, the input data can be heavily 
skewed among the processors. We use a dynamic redistri- 
bution technique which tries to equalize the amount of work 
assigned to each processor. 

4.1. Parallel Selection - Implementation and Anal- 
ysis 

We now present the parallel algorithm for selection, mak- 
ing use of the Dynamic Data Redistribution algorithm given 
in Section 3. The following is run on processor j :  

Algorithm 2 Parallel Selection Algorithm 

Block Distribu,ted Memory Model Algorithm. 
Input: 

{ j 1 is my processor number; 
{ p 
p -  1; 
{ A } is the A4 x p input array of elements; 
{ N } is the 1 x p input array of nj ’s; 

is the total number ofprocessors, labeled from 0 to 

begin 
1. If n < p2 then 

1.1 A’ := gather( A); 
1.2 Processor 0 calls a sequential selection 

1.3 Result = bast($). 
algorithm to find z, the ith value of A’. 

2. redist (A, N, p); 
3. Radixsort local elements A[j][O : N [ j ]  - 11, 

and find the local median; 
4. B = gather of the p median elements, 

distributed one per processor; 
5. Processor 0 calculates the median of the 

medians m, and 5.1 2 = bast(m); 
6. Each processor j finds the position k, 
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where k = maz{l lA[l , j]  5 z}, using the binary 
search technique, and sets T [ j ]  = k ;  

(This returns the sum t = 
ber of elements on the low side of the partition;) 

algorithm is called recursively on the first k elements 
held in A on each processor. 
Otherwise, i > t ,  and selection is called recursively 
on the last N [ j ]  - k elements held in A on each 
processor with the selection index i - k .  

7. t = combine(T, +); 
T[ j ] ,  i.e. the num- 

8. If i 5 t ,  then N [ j ]  = k and the selection 

end 

The analysis of the parallel selection algorithm shows 
that [4] 

T c o m m ( n , P )  5 0 ( r + p ) l o g s + m ) ,  n > p 2 ;  

= 0 ; + m ) ,  
(2) 

where m is defined in Eq. (1) to be maxj ( W [ j ] } .  the maxi- 
mum number of elements initially on any of the processors. 
For fixed p ,  the communication time increases linearly with 
m and logarithmically with n,  while the computation time 
grows linearly with both m and n. 

i Tcomp(n7 P )  i 

. ...... . ..... ....... . 

DB UB RB 0 1 6  U16 R16 D32 U32 R32 t S l 2  LlCel  

Figure 6. Performance of Median Algorithm 

The running time of the median algorithm on the TMC 
CM-5 using both methods of dynamic data redistribution is 
given in Figure 6. Similar results are given in Figure 7 for 
the IBM SP-2. In all data sets, initial data is balanced. 

4.2. Data Sets 

The input sets are defined as follows. If the set's tag 
ends with 8, 16, 32, 64, or 128, there are initially 8192, 
16384, 32768, 65536, or 131072 elements per processor, 
respectively. The values of these elements are chosen by 

- 
f 
t- 

nedian Algorithm Executlon Time 

Usthod B for Dynank Data Rdiatr!butlon 

on a 1 6 d e  sP2 

T m  Spnt in Solecum kori thm 
Tmc Spnt Fbrformw Data M s e r b u t m  

08 

06 

04 

02 

D8 U8 U9 Dlb Ulb '1i6 D32 U32 U32 D64 U64 W D l 2 8  U128 R I 2 8  
oc  

Input Set  o f  Elements 

Figure 7. Performance of Median Algorithm 
on the SP-2 

the method represented by the first letter. If the number of 
elements per processor is q ,  and the processor is labeled j ,  
f o r O s j s p - 1 , t h e n  

0 D: Duplicate. Each processor holds the values [0, q - 
11; 

I ) q  - 11; 
0 U: Unique. Each processor holds the values [ j q ,  (j + 

9 R: Random. Each processor holds uniformly random 
values in the range [O, - 11. 

The last two input sets correspond to an intermediate prob- 
lem set from a computer vision algorithm for segmenting 
images [5]. Set L512 (derived from band 5 of a 512 x 512 
Landsat TM image) contains a total of 218 elements, which 
is the same size as the input sets ending with tag 8 on a 32 
processor machine. Set L 1024, with a total of 220 elements, 
is derived from a similar 1024 x 1024 image, and has the 
same number of elements as an input set ending with tag 32 
on a 32 processor machine. 

On the SP-2, results given in Figure 7 are only for 
Method B, with each timing bar broken into two parts show- 
ing the portion of the total running time spent performing 
data redistribution versus the remaining selection time. As 
these empirical data show, dynamic data redistribution is 
only a small fraction of the total running time, which im- 
plies that the data is fairly balanced after each iteration. 
Also, in every case, Method B outperforms Method A. 
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Figure 8. Number of candidates per iteration 

We benchmark our selection algorithm in Table I. The 
input for this problem, taken from the NAS Parallel Bench- 
mark for Integer Sorting [6], is 223 integers in the range 
[0,2l9), spread out evenly across the processors. Each 
key is the average of four consecutive uniformly distributed 
pseudo-random numbers generated by the following recur- 
rence: 

xk+1 = azk(mod2 46 1 

where a = 513 and the seed xo = 314159265. Thus, the 
distribution of the key values is a Gaussian approximation. 
On a p-processor machine, the first 3 generated k.eys are 
assigned to PO, the next to P I ,  and so forth, until each 
processor has keys. 

The empirical results presented in Table I clearly show 
that the selection algorithm is scalable with respect to ma- 
chine size, since doubling the number of processors solves 

Machine 
IBM-SP2-TN2 I 4 I 4.88 

I PE's I BDMSelection Algorithm 0 

I t 8 1  1.98 H 

16 I 1.81 
32 I 0.929 

0.483 
0.275 

Meiko CS-2 3.03 

TMC CM-5 16 5.57 
32 2.77 

1 6 4 1  1.68 

Table 1. Execution Times for the High-Leve! 
BDM Selection (in seconds) on the NAS IS 
input set 

the problem in about half the time. This is consistent with 
the BDM analysis given in Eq. (2). For n = 223 and machine 
sizes typically in the order of tens or hundreds of processors, 
computation dominates the selection algorithm, and execu- 
tion time scales as i. (For verification, the median of the 
NAS input set is 262198.) Our code for selection, written 
in the high-level parallel language of SPLIT-C, is ported to 
the parallel machines with absolutely no modifications to 
the source code. Even without machine-specific (low-level) 
code optimizalions that are typically needed for superior 
parallel performance, we have an algorithm which performs 
extremely well across a variety of current parallel machines 
such as the Cray T3D, IBM SP-2, TMC CM-5, and Meiko 
cs-2.  

Next we compare our selection algorithm with that of 
the trivial method of selection by parallel integer sorting 
on the TMC CM-5. As shown in Table 11, our high-level 
selection algorithm beats the fastest sorting results on the 
CM-5 for the NAS input. Note that the algorithm in [7] is 
machine-speciiic and does not actually result in a sorted list. 

Figure 8 shows that the parallel selection algorithm for 
R8, R16, and R32, reduces the candidate elements by ap- 
proximately one-half during each successive iteration. In 
this plot, p = 32; thus, when the data sets shrinks to a size 
less than p2,  i.e. smaller than 1024, a sequential algorithm 
is employed to solve the corresponding selection problem. 
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Researchers 

Bader & JAJA 
Dusseau H81 

Time (s) Notes 

2.77 B D M  Selection 
7.67 Radix Sort 

Table 11. Execution Time for Selection on a 32- 
processor CM-5 on the NAS IS input set 
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