Practical Parallel Algorithms for Personalized
Communication and Integer Sorting

David A. Bader* David R. Helman Joseph JaJa'

Institute for Advanced Computer Studies, and

Department of Electrical Engineering,
University of Maryland, College Park, MD 20742

{dbader, helman, joseph}@umiacs.umd.edu

September 4, 1996

Abstract

A fundamental challenge for parallel computing is to obtain high-level,
architecture independent, algorithms which efficiently execute on general-
purpose parallel machines. With the emergence of message passing standards
such as MPI, it has become easier to design efficient and portable parallel
algorithms by making use of these communication primitives. While existing
primitives allow an assortment of collective communication routines, they do
not handle an important communication event when most or all processors
have non-uniformly sized personalized messages to exchange with each other.
We focus in this paper on the h-relation personalized communication
whose efficient implementation will allow high performance implementations
of a large class of algorithms. While most previous h-relation algorithms
use randomization, this paper presents a new deterministic approach for h-
relation personalized communication with asymptotically optimal complexity
for h > p®. As an application, we present an efficient algorithm for stable
integer sorting.

*The support by NASA Graduate Student Researcher Fellowship No. NGT-50951 is
gratefully acknowledged.

tSupported in part by NSF grant No. CCR-9103135 and NSF HPCC/GCAG grant
No. BIR-9318183.

The algorithms presented in this paper have been coded in SpLIT-C
and run on a variety of platforms, including the Thinking Machines CM-5,
IBM SP-1 and SP-2, Cray Research T3D, Meiko Scientific CS-2, and the
Intel Paragon. Our experimental results are consistent with the theoretical
analysis and illustrate the scalability and efficiency of our algorithms across
different platforms. In fact, they seem to outperform all similar algorithms
known to the authors on these platforms.

Keywords: Parallel Algorithms, Personalized Communication,
Integer Sorting, Radix Sort, Communication Primitives, Routing h-
Relations, Parallel Performance.

1 Problem Overview

A fundamental challenge for parallel computing is to obtain high-
level, architecture independent, algorithms which efficiently execute
on general-purpose parallel machines. This problem has become more
tractable with the advent of message passing standards such as MPI
[35], which seek to guarantee the availability of efficient implemen-
tations of certain basic collective communication routines. However,
these proposed primitives are all regular in nature and exclude certain
pervasive non-uniform communication tasks such as the h-relation
personalized communication. In this problem, each processor has
possibly different amounts of data to share with some subset of the
other processors, such that each processor is the origin or destination
of at most h messages. Clearly, such a task is endemic in parallel
processing (e.g. [24, 46, 38]), and several authors have identified its
efficient implementation as a prerequisite to efficient general purpose
computing ([46]). In particular, in his “bridging model” for parallel
computation, Valiant has identified the h-relation personalized com-
munication as the basis for organizing communication between two

consecutive major computation steps.

Previous parallel algorithms for personalized communication (typ-
ically for a hypercube, e.g. [30, 42, 39, 14, 15, 12, 1], a mesh, e.g.
[26, 41, 31, 16, 27], or other circuit switched network machines, e.g.
[36, 21, 34, 40]) tend to be network or machine dependent, and thus
not efficient when ported to current parallel machines. In this paper,
we introduce a novel deterministic algorithm that is shown to be both
efficient and scalable across a number of different platforms. In ad-
dition, the performance of our algorithm is invariant over the set of
possible input distributions, unlike most of the published implemen-
tations.

As an application of this primitive, we consider the problem of sort-
ing a set of n integers spread across a p-processor distributed memory
machine, where n > p?. Fast integer sorting is crucial for solving
problems in many domains, and, as such, is used as a kernel in several
parallel benchmarks such as NAS! [10] and SPLASH [48]. Because
of the extensive and irregular communication requirements, previous
parallel algorithms for sorting (on a hypercube, e.g. [13, 1], or a mesh,
e.g. [23, 33]) tend to be network or machine dependent, and there-
fore not efficient across current parallel machines. In this paper, we
present an algorithm for integer sorting which couples the well known
parallel radix sort algorithm together with our algorithm for person-
alized communication. We show that this sorting algorithm is both
efficient and scalable across a number of different platforms.

Our algorithms are implemented in SPLIT-C [19], an extension
of C for distributed memory machines. The algorithms make use of

MPI-like communication primitives but do not make any assumptions

!Note that the NAS IS benchmark requires that the integers be ranked and not neces-
sarily placed in sorted order.

as to how these primitives are actually implemented. The basic data
transport is a read or write operation. The remote read and write
typically have both blocking and non-blocking versions. Also, when
reading or writing more than a single element, bulk data transports
are provided with corresponding bulk_read and bulk_write primi-
tives. Our collective communication primitives, described in detail in
[5, 8, 9], are similar to those of MPI [35], the IBM POWERparallel
[11], and the Cray MPP systems [18] and, for example, include the fol-
lowing: transpose, bcast, gather, and scatter. Brief descriptions
of these are as follows. The transpose primitive is an all-to-all per-
sonalized communication in which each processor has to send a unique
block of data to every processor, and all the blocks are of the same
size. The becast primitive is called to broadcast a block of data from
a single source to all the remaining processors. The primitives gather
and scatter are companion primitives whereby scatter divides a sin-
gle array residing on a processor into equal-sized blocks which are
then distributed to the remaining processors, and gather coalesces
these blocks residing on the different processors into a single array on
one processor. See [5, 9, 8, 7, 6] for algorithmic details, performance
analyses, and empirical results for these communication primitives.
The organization of this paper is as follows. Section 2 presents
our computation model for analyzing parallel algorithms. The Com-
munication Library Primitive operations which are fundamental to
the design of high-level algorithms are given in [5, 8, 9]. Section 3
introduces a practical algorithm for realizing h-relation personalized
communication using these primitives. A parallel radix sort algorithm
using the routing of h-relations is presented in Section 4. Finally, we

describe our data sets and the experimental performance of our integer

sorting algorithm in Section 5.

2 The Model for Parallel Computa-
tion

In this section, we describe the simple model that we use for analyz-
ing the performance of parallel algorithms. Our model is based on the
fact that current hardware platforms can be viewed as a collection of
powerful processors connected by a communication network that can
be modeled as a complete graph on which communication is subject
to the restrictions imposed by the latency and the bandwidth prop-
erties of the network. A parallel algorithm consists of a sequence of
local computations interleaved with communication steps, where we
allow computation and communication to overlap. We account for
communication costs as follows.

The transfer of a block consisting of m contiguous words between
two processors, assuming no congestion, takes 7 + om time, where 7
is a bound on the latency of the network and o is the time per word
at which a processor can inject or receive data from the network.
Note that the bandwidth per processor is inversely proportional to
o. We assume that the bisection bandwidth is sufficiently high to
support block permutation routing among the p processors at the rate
of % per processor. In particular, for any subset of g processors, a
block permutation among the g processors takes 7 + om, where m
is the size of the largest block. Similar to MPI and other message
passing standards, we assume that communication and computation
can be overlapped. This cost model can be justified by our earlier
work [28, 29, 7, 8,9, 5].

Using this cost model, we can evaluate the communication time
Teomm(n,p) of an algorithm as a function of the input size n, the
number of processors p, and the parameters 7 and o. The coefficient of
T gives the total number of times collective communication is used, and
the coefficient of o gives the maximum total amount of data exchanged
between a processor and the remaining processors.

This communication model is close to a number of similar models
(e.g. the BSP [46], LogP [20], and LogGP [2] models) that have re-
cently appeared in the literature but significant differences exist. Our
model is extended to include a collection of communication primitives
that makes our model considerably easier to use than the BSP or the
LogP models.

We define the computation time T¢omy(7, p) as the maximum time
any processor takes to perform all the local computation steps. In
general, the overall performance Tiomp(n, p) + Teomm(n, p) involves a
tradeoff between Tcomm(n, p) and Teomp(n,p). Our aim is to develop
parallel algorithms that achieve Teomp(n,p) = O(%) such that
Teomm(n,p) is minimum, where Ty, is the complexity of the best se-
quential algorithm. Such optimization has worked very well for the
problems we have looked at, but other optimization criteria are possi-
ble. The important point to notice is that, in addition to scalability,
our optimization criterion requires that the parallel algorithm be an
efficient sequential algorithm (i.e., the total number of operations of

the parallel algorithm is of the same order as Tye,)-

3 An h-Relation Personalized Commu-
nication

For ease of presentation, we first describe the personalized communi-
cation algorithm for the case when the input is initially evenly dis-
tributed amongst the processors, and return to the general case in
Section 3.3. Consider a set of n elements evenly distributed amongst
p processors in such a manner that no processor holds more than %
elements. Each element consists of a pair (data,dest), where dest is
the location to where the data is to be routed. The only assumption
made about the pattern of data redistribution is that no processor is
the destination of more than h elements. We assume for simplicity
(and without loss of generality) that A is an integral multiple of p.

A straightforward solution to this problem might attempt to sort
the elements by destination and then route those elements with a given
destination directly to the correct processor. (These single-phase al-
gorithms will be discussed in greater detail in Section 3.2.) No matter
how the messages are scheduled, there exist cases that give rise to large
variations of message sizes, and hence will result in an inefficient use
of the communication bandwidth. Moreover, such a scheme cannot
take advantage of regular communication primitives proposed under
the MPI standard. The standard does provide the MPI_Alltoallv
primitive for the restricted case when the elements are already locally
sorted by destination, and a vector of indices of the first element for
each destination in each local array is provided by the user.

In our solution, we use two rounds of the transpose collective
communication primitive. In the first round, each element is routed

to an intermediate destination, and during the second round, it is

routed to its final destination.

The pseudocode for our algorithm is as follows:

Step (1): Each processor P;, for (0 < i < p — 1), assigns its
% elements to one of p bins according to the following rule: if
element k is the first occurrence of an element with destination
J, then it is placed into bin (i 4+ j) mod p. Otherwise, if the last
element with destination j; was placed in bin b, then element k

is placed into bin (b + 1) mod p.

Step (2): Each processor P; routes the contents of bin j to
processor Pj, for (0 < 4,7 < p —1). Since we will establish
later that no bin can have more than z% + £ elements, this is the
equivalent to performing a transpose communication primitive

with block size z% + g.

Step (3): Each processor P; rearranges the elements received in

Step (2) into bins according to each element’s final destination.

Step (4): Each processor P; routes the contents of bin j to
processor P;, for (0 <i,j < p—1). Since we will establish later
that no bin can have more than %—l—g elements, this is equivalent

. e el . . h
to performing a transpose primitive with block size s+ L.

Step (5): Each processor P; unpacks its received elements by
placing each element in the correct destination location specified

by the dest field.

Correctness

To prove the correctness of our algorithm, we need to establish the

bounds on the bin sizes claimed in Steps (2) and (4). To establish

the bound on the size of each bin in Step (2), we note that the assign-
ment process in this step is equivalent to sorting all the elements held
in processor P; by destination and then assigning all those elements
with a common destination j one by one to successive bins?, beginning
with bin (i + j) mod p. Thus, the Eth element with destination j goes
to bin (i + j + k) mod p. Let n; be the number of elements a proces-
sor initially has with destination j. Notice that with this placement
scheme, each bin will have at least a; = [%J elements with destina-
tion j, corresponding to the number of complete passes made around
the bins, with b; = n; mod p consecutive bins having one additional
element for j. Moreover, this run of additional elements will begin
from that bin to which we originally started placing those elements
with destination j. This means that if bin / holds an additional ele-
ment with destination j, the preceding (I — (74 7)) mod p bins will also
hold an additional element with destination j. Further, note that if
bin [holds exactly g such additional elements, each such element from
this set will have a unique destination. Since for each destination, the
run of additional elements originates from a unique bin, for each dis-
tinct additional element in bin /, a unique number of consecutive bins
preceding it will also hold an additional element with destination j.
Consequently, if bin [holds exactly ¢ additional elements, there must
be a minimum of 14+2+3+.... 4+ (¢ —3) + (¢ — 2) + (¢ — 1) additional
elements in the bins preceding bin ! for a minimum total of (¢ + 1)
additional elements distributed amongst the p bins.

Consider the largest bin which holds A = E?;é a; of the evenly
placed elements and § of the additional elements, and let its size be

binsize = A + 6. Recall that if a bin holds ¢ additional elements,

2The successor of bin p — 1 is bin 0.

then there must be at least %((5 + 1) additional elements somehow

distributed amongst the p bins. Thus,

p—1
n
P 2mi=pY a;j+ b
Jj=0 J J
0
> pA+(0+1). (1)
Rearranging, we get
A< DG4 @)
—p? 2 '
Thus, we have that
binsize < % — 2 (541) 46 (3)
insize < 22 .

Since the right hand side of this equation is maximized over § €

{0,...,p— 1} when § = p — 1, it follows that

L n p—1
b <s+—. 0O 4
znszze_p2+ 2 (4)

One can show that this bound is tight as there are cases for which the
upper bound is achieved.

To bound the bin size in Step (4), recall that the number of
elements in bin j at processor 7 is simply the number of elements which
arrive at processor 7 in Step (2) which are bound for destination j.
Since the elements which arrive at processor 7 in Step (2) are simply
the contents of the §*1! bins formed at the end of Step (1) in processors
0 through p — 1, bounding Step (4) is simply the task of bounding
the number of elements marked for destination 5 which are put in any
of the p i*1 bins in Step (1). For our purposes, then, we can think
of the concatenation of these p ith bins as being one superbin, and

we can view Step (1) as a process in which each processor deals its

10

set of n; elements bound for destination j into p possible superbins,
each beginning with a unique superbin (i+ j) mod p. This is precisely
the situation considered in our analysis of the first phase, except now
the total number of elements to be distributed is at most h. By the
previous argument, the bin size for the second phase is bounded by

h -1
binsize < p + ;DT 0 (5)

Overall Complexity of the Algorithm

Clearly, all computation in this algorithm can be performed in
Teomp(n,p) = O(h). The transpose primitive, whose analysis is given
in [8], takes Teomm(n,p) < 7+ <1% + g) (p — 1)o in the second step,
and Teomm(n,p) <7+ (% + g) (p — 1)o in the last step. Thus, the

overall complexity of our algorithm is given by

T(n,p) = Tcomp(nap) +Tcomm(n,p)
- O(h+7+(h+g+p2)a)
= O(h+7’—|—(h+p2)o), (6)

for p? < n. Clearly, the local computation bound is asymptotically
optimal. As for the communication bound, 7 + (h + %) o is a lower
bound as in the worst case a processor sends % elements and receives

h elements.
Related Work

The overall two-stage approach was independently described by
Kaufmann et al. [31] and Ranka et al. [37] around the same time our

earlier draft ([4]) appeared on our Web page. However, our algorithm

11

is simpler, has less overhead, and has a tighter bound on the block size

of the transpose than the algorithms described in the related work.

3.1 Experimental Results

We are unaware of any previously defined benchmarks to analyze h-
relation implementations. In this section, we describe a parameterized
family of h-relations that can be used to study the behavior of an h-
relation algorithm, whenever n > p?. Our rationale for choosing this
particular input is to determine how an h-relation algorithm responds

to increasing load imbalance.

Final Distribution of Elements

Elements

012 2n/h-1 p-1

Processors

Figure 1: Final distribution of the keys corresponding to our input data sets

The benchmark, parameterized by n, p, and h, is defined as follows.
The input is of size n and is initially distributed cyclically across the p
processors such that each processor P; holds % keys, for (0 < i < p—1).
For h = % the input consists of vy = % keys labelled for Py, followed by
vy = % keys labelled for P;, and so forth, (with v; = % keys labelled

12

for P;), with the last v, = % keys labelled for P,_;. Note that
this results in the same data movement as the transpose primitive?.
For h > %, instead of an equal number of elements destined for each
processor, the function v; is defined by
[h(l—ﬁi)J, if i< i£p—1,
=4 0, if 28 <i<p-—1, (7)

2n _
R

fo |p (1= 556)] s ii=p-1.

The result of this data movement, shown in Figure 1, is that processor

n —

0 receives the largest imbalance of elements, i.e. h, while other pro-
cessors receive varying block sizes ranging from 0 to at most h. For
h = 8%, approximately ?ﬂTp processors receive no elements, and hence
this represents an extremely unbalanced case. Note that in these tests,
each element consists of two integer* fields, data and dest, although
only the destination field dest is used to route each element.

As shown in Figure 2, the time to route an h-relation personalized
communication for a given input size on a varying number of proces-
sors (p) scales inversely with p whenever 7 is large compared with p.
For small inputs compared with the machine size, however, the com-
munication time is dominated by O(p?) as shown in the case of the
32-processor Meiko CS-2 with n = 128 K. The routing time for a fixed
problem and machine size varies directly with the parameter h (see
Figure 6 in Appendix A). These empirical results from a variety of
parallel machines are consistent with the analysis given in Eq. (10).

We have used vendor-supplied libraries for collective communication

3Note that the personalized communication is more general than a transpose primitive
and does not make the assumption that data is already held in contiguous, regular sized
buffers.

“In all our test machines, an integer is 4-bytes, except the Cray T3D, where an integer
is 8-bytes.

13

Performance of h-Relation
Personalized Communication
with h=4n/p

Time (s)

ol

64K 128K 256K S12K m

Total Number of Elements

T™MC CM-5

Performance of h-Relation
Personalized Communication
with h=4n/p

P
/

Time (s)

ol

128K 256K S12K ™

Total Number of Elements

Meiko CS-2

Time (s)

Time (s)

Performance of h-Relation
Personalized Communication
with h=4n/p

ol

32K 64K 128K 256K S12K

Total Number of Elements

IBM SP-2

Performance of h-Relation
Personalized Communication
with h=4n/p

N e

—— 32

—= 128

a1

Total Number of Elements

Cray Research T3D

Figure 2: Performance of personalized communication (h = 42) with respect

to machine and problem size

primitives on the IBM SP-2 implementation. The other machines
used in this experiment do not have vendor-supported collective com-
munication libraries, and hence we used our generic communication

primitives as described in [5, 9, 8, 7, 6].

3.2 Comparison with Single-Phase Algorithms

It has been widely believed that an efficient algorithm for personalized
communication is a single-phase algorithm in which data travels di-
rectly from source to destination with no intermediate routing. These
single-phase algorithms generally partition messages into contention-
free routing steps separated by global synchronizations. As far as
we can tell, this algorithm was first reported (in Japanese) by Take
([42]) for the hypercube network topology. Later, several variations of
this algorithm were developed (still dependent upon network topology)
such as the Optimal Circuit Switched, Hypercube, or Mesh Algorithm
([40, 12, 27, 39, 14, 15, 16, 1, 34, 25, 36, 21, 26]), the Pairwise-Exchange
(PEX) algorithm ([45, 43, 44]), and the general Linear Permutation
algorithm ([47]). For our comparison, we consider the standard algo-
rithm that consists of p steps, such that during step &k, (0 < k < p—1),
processor 7 sends data labelled for processor j =i @ k directly to P;.
The operation ¢ @ k refers to the bitwise exclusive-or of ¢ and k, which
forms a permutation (i — i @ k), for 0 < 4,k < p — 1. Thus, each
pair of processors ¢ and j will exchange data during the (i ® j)th step
(known as the PEX algorithm). Another commonly used permutation
is (1 — 7 + k mod p), where processor P; sends data directly to pro-
cessor P; during iteration (i — j) mod p (known as the LP algorithm).
However, current parallel machines tend to route arbitrary permuta-

tions with the same efficiency. And thus, the experimental running

15

times for various permutation strategies do not differ significantly.

The pseudocode for the single-phase algorithm is as follows:

e Step (1): Each processor P; computes H;(j), the number of
elements P; needs to send to P;, (0<j <p—1).

e Step (2): An all-to-all personalized communication is per-
formed such that each processor receives local copies of the arrays
computed in Step (1). This communication can be overlapped
with computation, where processor P; uses H; to rearrange its

local elements into a new array sorted® by destination processor.

e Step (3): Each processor P; calculates Offset;(j) = 22;10 Hi(j),
the total number of elements that processor j will receive from
the processors with labels less than ¢. In other words, this is the
offset in processor j’s receiving buffer that processor 7 will use

when sending its elements to processor j.

e Step (4): For £k = 0 to p — 1, processor P; sends its block of
elements to processor j =i @ k, with Offset; (7).

e Step (5): Each processor P; unpacks its received elements by
placing each element in the correct destination location specified

by the dest field.

While the performance of this algorithm is in general comparable to
the two-phase scheme, we introduce a new benchmark that illustrates

the superiority of the two-phase scheme.

5Note that the computation of H; is the first step in a sequential bucket sort with p
buckets.

16

3.2.1 The g-group Benchmark

The g-group benchmark is an h-relation created by first partitioning
the p processors into groups of consecutive processors of size g, where
h is a multiple of % and a power of two, g and p are assumed to be
powers of two, and h% <g< p\/g . All of the processors in a partic-
ular group evenly distribute their input elements amongst the same
set of t processors, where t is a power of two such that (% <t< %).
If we index these groups of processors by 7, (O <5< %’ — 1), then
the first pﬂt elements at each processor in group j will be sent to the
processor with index £ @ jg, the second % elements at each processor
in group j will be sent to processor (((5 + g) mod p) @ jg) + [5—7”,
the third p% elements at each processor in group j will be sent to pro-
cessor (((5 + 2g) mod p) @ jg) + [?TZJ’ and so forth. More precisely,
partition the % elements at processor ¢ into ¢ blocks of size ;‘—t indexed
from b = 0 to ¢t — 1, and label the elements within a block from k =0

to pﬂt — 1. Then the destination processor is given by

(((5+b0) moar) @ | |o) + |55 ®)

and the offset in that processor by

(%_([?TZJ xh))—l—(imodg)%%—%, if k is even,

(2 — (| &n] x k) + ((Gmod g) + 1) & — £33, if k is odd.
(9)
An example showing the final distribution of the g-group bench-
mark with 16 processors, for g = 4, ¢t =4, and h = 2%, is drawn in
Figure 3. For h = 2%, all of the input elements are destined to only
half of the processors.
Tables I and II present the results of our comparison, providing em-

pirical support for the notion that our two-phase personalized com-

17

2nlp I

5] 7] 13 7[5 3 lu
146 10 2 6| 1a 2|10
13]|5 | 9|1 5|13 19
124 s 0 4|12 olls
13 157 i 7 l1s
10 2 iy 2|10 6 l1a
91 135 19 5|13
50 124 o8 a2

o
=
N
w
IN
a1
o
~
©
©
=
o
=
[
N
[N
w

14 15

Processors

Figure 3: Final distribution of the g-group benchmark with A = 2%, p =16
processors, ¢ = 4, and ¢ = 4. Note that the label affixed to each block
corresponds to the source processor of those % elements.

munication scheme for routing an arbitrary h-relation can be faster
than the single-phase communication algorithm described above. For
brevity, results from the IBM SP-2 and Meiko CS-2 have been left out
of this section. These results are similar and can be found on our web
page (see Section 6). It should be noted that there are cases when
single-phase routing is more efficient than two-phase algorithms. For
example, if more information is known a priori about the data distri-
bution (or the value of h), then it is possible that this knowledge can

lead to a more efficient single-phase implementation.

3.3 General Case

We now consider the general case in which each processor is the source

of at most h; elements and the destination of at most hy elements. We

18

H 64 processor TMC CM-5 H

Input n=1M n =2M n = 4M
h ‘ g ‘ t || 2-phase | 1-phase || 2-phase ‘ 1-phase || 2-phase ‘ 1-phase
% 8| 8| 0.153 0.236 0.311 0.477 0.609 1.04
2% 8141 0.194 0.239 0.388 0.474 0.770 1.04
4% 16 | 4 || 0.253 0.381 0.504 0.823 1.00 1.74
8% 16 | 2 || 0.351 0.544 0.700 1.04 1.44 2.17

Table I: Total execution time (in seconds) for the g-group benchmark for
2-phase vs. 1-phase h-relation routing algorithms on a 64 processor TMC
CM-5.

| 64 processor Cray T3D |

Input n=1M n = 2M n = 4M
h ‘ g ‘ t || 2-phase ‘ 1-phase || 2-phase ‘ 1-phase || 2-phase ‘ 1-phase
% 818 0.0334 | 0.0306 0.0659 | 0.0614 0.131 0.125
2% 8|4 0.0424 | 0.0435 0.0840 | 0.0882 0.167 0.176
4% 16 | 4 | 0.0596 | 0.0625 0.118 0.128 0.235 0.255
8% 16 | 2 | 0.0869 | 0.100 0.173 0.199 0.345 0.400

Table II: Total execution time (in seconds) for the g-group benchmark for
2-phase vs. 1-phase h-relation routing algorithms on a 64 processor Cray
T3D.

can use the same deterministic algorithm with the block size of the
transpose in Step (2) being % + £ and the block size of the trans-
pose in Step (4) being %2 + £. The resulting overall complexity is
O(h1 +ho+7+ (h1 + ho + p2) a). Alternatively for large variances
(h1 > hs), we can use our dynamic data redistribution algorithm in
[8, 9] followed by our deterministic algorithm described earlier. The
resulting overall complexity will also be the same.

Next, we develop an efficient sorting algorithm which makes use of

the h-relation personalized communication.

19

4 Parallel Integer Sorting

In this section, we describe and analyze an efficient and scalable al-
gorithm for sorting integers on a parallel machine. We couple our
theoretical analysis with experiments on a number of platforms to
compare our performance with that of the best known parallel radix
sort, and to evaluate the efficiency and the scalability of our algo-
rithm. For our input sets, we use a variety of benchmarks (described
in Section 5) which represent a diverse sample of possible inputs.
Consider the problem of sorting n integer keys in the range [0, M —
1] that are distributed equally over a p-processor distributed memory
machine. An efficient algorithm is radix sort that decomposes each
key into groups of r-bit blocks, for a suitably chosen r, and sorts the
keys by sorting on each of the r-bit blocks beginning with the block
containing the least significant bit positions [32]. Let R = 2" > p. As-
sume (w.l.o.g.) that the number of processors is a power of two, say
p = 2*, and hence % is an integer = 2"¥ > 1. Our algorithm demon-
strates efficient uses of the transpose communication primitive, as

well as the h-relation communication scheme.

4.1 Counting Sort Algorithm

We start by describing the counting sort algorithm used to sort on
individual blocks of the keys. The Counting Sort algorithm sorts n
integers in the range [0, R — 1] by using R counters to accumulate the
number of keys equal to ¢ in bucket B;, for 0 < i < R — 1, followed
by determining the rank of the each element. Once the rank of each
element is known, we can use our h-relation personalized communi-

cation to move each element into the correct position; in this case

20

h = %. Counting Sort is a stable sorting routine, that is, if two keys
are identical, their relative order in the final sort remains the same as
their initial order.

In a practical integer sorting problem, we expect R = %. The
pseudocode for our Counting Sort algorithm uses six major steps and
is as follows.

e Step (1): For each processor %, count the frequency of its %

keys; that is, compute I[:][k], the number of keys equal to k, for
(0<k<R-1).

e Step (2): Apply the transpose primitive to the I array using
the block size %. Hence, at the end of this step, each processor

will hold % consecutive rows of 1.

e Step (3): Each processor locally computes the prefix-sums of

its rows of the array I.

e Step (4): Apply the (inverse) transpose primitive to the R
corresponding prefix-sums augmented by the total count for each

bin. The block size of the transpose primitive is 2%.
e Step (5): Each processor computes the ranks of local elements.

e Step (6): Perform a personalized communication of keys to rank

location using our h-relation algorithm for h = %.

The analysis of our counting sort algorithm is as follows. Steps (1),
(3), and (5) execute in O(% + R) local computation time with no
communication. Steps (2), (4), and (6) are communication supersets
and have the following analysis. Steps (2) and (4) are the transpose
primitive with block sizes % and 2% and hence result in O(7 + Ro)
communication. Step (6) uses the personalized communication prim-

itive for n elements distributed equally across p processors. Because

21

this routing is a permutation (h = %), it has the following complexity

T(n,p) :O(%+T+(%+p2)a) (10)

provided that p? < n. Thus, the overall complexity of our Counting
Sort algorithm is given by

T(n,p) = Tcomp(nap) +Tcomm(n;p)
= O(%+R+T+(R+%+p2)a). (11)

Notice that an obvious lower bound to sort the integers is (% +74+ %a),
and hence our algorithm is asymptotically optimal when R = O(%

and p? = O(n).

4.2 Radix Sort Algorithm

Radix Sort makes several passes of the previous Counting Sort in
order to completely sort integer keys. Counting Sort can be used as
the intermediate sorting routine because it provides a stable sort. Let
the n integer keys fall in the range [0,M — 1], and M = 2°. Then
we need % passes of Counting Sort; each pass works on r-bit blocks
of the input keys, starting from the least significant block of r bits
to the most significant block. Therefore, the overall complexity of
Radix Sort is exactly g times that of Counting Sort. We choose the
radix R to be % (note that we are assuming p? < n), and a typical
value is R = 1024. Assuming that M is polynomial in n, g becomes
a constant, and therefore, the total complexity reduces to T'(n,p) =
0 (% + 7+ (% + p2) a). Thus, the computational analysis derived for
radix sort is asymptotically optimal since sequential radix sort runs
in ©(n) whenever the range of integers is polynomial in 7. The lower

bound for communication is 7 + %a since each processor might need

22

to inject all of its elements into the network, and the communication

complexity is asymptotically optimal whenever p3 = O(n).

5 Performance Evaluation of Radix Sort

5.1 Data sets

Four input distributions are used to test our integer sorting algorithm.
e [R]: random integers with entropy of 31 bits per key®;
e [S]: random integers with entropy of 6.2 bits per key;

e [C]: keys are consecutive in value (from 0 to n—1) and are placed

cyclically across the processors;

e [N]: this input is taken from the NAS Parallel Benchmark for
Integer Sorting [10]. Keys are integers in the range [0,2'?), and
each key is the average of four consecutive uniformly distributed

pseudo-random numbers generated by the following recurrence:
Tpy1 = azy (mod 2%6)

where a = 5'% and the seed zy = 314159265. Thus, the dis-
tribution of the key values is a Gaussian approximation. On a
p-processor machine, the first % generated keys are assigned to

n

Py, the next % to Pi, and so forth, until each processor has 0

keys.

5.2 Experimental Results: Radix Sort

For each experiment, the input contains a total of n = 2¢ integers

distributed evenly across p processors. The output consists of the

6Entropy of 31 implies that keys values are uniformly distributed in the range [0,23!).
"Entropy of 6.2 implies that each key is the result of the bitwise-AND boolean operation
applied to five successive keys of entropy 31.

23

sorted elements held in an array congruent with the input. Each
processor’s output block of elements is in non-descending order, and
no element in processor i is greater than any element in processor 7,
for all 4 < j. Note that we use 32-bit keys and sort using all 32-bits,
even when the input distribution is known to be more restrictive, such

as the N input which contains only 19 significant bits.

Radixsort
ona 16-node S5P-2

Input
Distribution:

Ly u B o

Time (5}

AN

Bk 128K 256K o

2K M 2M Ly =1yl 16M

Total Number of Keys

Figure 4: Performance is independent of key distribution

The performance of our radix sort is independent of input distri-
bution, as shown in Figure 4. This figure presents results from the
IBM SP-2; results obtained from other machines, such as the CM-5,
CS-2, and T3D, are similar and validate this claim as well.

As shown in Figure 5, the execution time of radix sort using a fixed

number of processors is linear in input size n. Note that this figure is

24

a log-log plot. Since g and R are constants for a given problem size,
the running time is O(%), validating our prediction from the bounds
in the previous section. In addition, the execution time of radix sort
for a given input size on a varying number of processors (p) scales

inversely with p. Again, this was predicted by our earlier analysis.

Radixsort: Scalability in Machine and Problem Size Radixsort: Scalability in Machine and Problem Size
on the CHM-5 on the SP-2
10 10
P
2z (G 2z
g 32 g
[B 64 [s
= A —— .-
7
7
‘
.
I LR .
Gk 128K 296K 512K 1" 2M M
Total Number of Keys Total Number of Keys
Radixsort: Scalability in Machine and Problem Size Radixsort: Scalability in Machine and Problem Size
an the C5-2 on the T3D
10 10
T e
) O
E q E
= F ' g
7
it .
: z 1
i
.
1 o1 Z A
128K 256K 512K i 2M 258K S12K m 2 4
Total Number of Keys Total Number of Keys
Meiko CS-2 Cray Research T3D

Figure 5: Scalability of Radix Sort With Respect to Machine and Problem
Size

25

5.3 Comparison with Other Implementations

Table IIT presents a comparison of our radix sort with that of an
implementation by Alexandrov et al.® which we will refer to as the
ATS code. Performance of the latter code, which had been optimized
for the Meiko CS-2, is given in [2]. Note that the AIS implementation
is based upon the original version by Dusseau ([22, 20]). Also, all codes
in this comparison have been written in the SPLIT-C language [19].
Our algorithm, which we refer to as BHJ, uses the fastest h-relation

implementation for each problem.

8Thanks to Mihai Tonescu and Klaus Schauser from UC Santa Barbara for providing
the source code.

26

Input SP-2 p =16 CM-5 p =32
[AIS+95] | [BHJI95] || [AIS+95] | [BHJ95]
[R], 5 = 4K 0.474 0.107 1.63 0.143
[R], 5 = 64K | 0.938 0.442 3.41 1.60
[R], 5 = 012K || 4.13 2.74 19.2 12.5
[C], 5 = 4K 0.479 0.107 1.64 0.131
[C], 3 =64K | 0.958 0.434 3.31 1.39
[C], 5 = 012K | 4.13 1.86 16.4 12.3
[N], 5 = 4K 0.475 0.109 1.63 0.131
[N], » = 64K | 0.907 0.412 3.55 1.40
[N], ; = 012K | 4.22 2.51 18.2 10.9
Input CS-2p=16
[AIS+95] | [BHJ95]
[R], 5 = 4K 0.664 0.050
[R], 5 =64K | 1.33 0.483
[R], 7 = 256K | 4.13 2.15
[R], 5 = 012K | 7.75 4.26
[C], 5 =4K 0.641 0.051
[C], 5 =64K | 1.23 0.503
[C], 7 = 256K || 3.87 2.20
[C], 5 = 512K | 6.86 4.31
[N], ; = 4K 0.623 0.051
[N], 5 = 64K | 1.22 0.507
[N], 5 = 256K | 3.57 2.20
[N], » = 012K | 6.34 4.31

Table III: Total Execution Time for Radix Sort on 32-bit Integers (in sec-
onds), Comparing the AIS and Our Implementations

27

6 Acknowledgments

We are sincerely grateful to those who have provided comments on an
earlier draft of this manuscript, including Leslie Valiant, Torsten Suel,
Zhiwei Xu, Ravi Shankar, and Sanjay Ranka.

We would like to thank the CASTLE/SpLIT-C group at The Uni-
versity of California, Berkeley, especially for the help and encourage-
ment from David Culler, Arvind Krishnamurthy, and Lok Tin Liu.
Computational support on UC Berkeley’s 64-processor TMC CM-5
was provided by NSF Infrastructure Grant number CDA-8722788.

The University of California, Santa Barbara, parallel radix sort
code was provided to us by Mihai Ionescu. Also, Klaus Schauser,
Oscar Ibarra, Chris Scheiman, and David Probert of UC Santa Bar-
bara, provided help and access to the UCSB 64-node Meiko CS-2.
The Meiko CS-2 Computing Facility was acquired through NSF CISE
Infrastructure Grant number CDA-9218202, with support from the
College of Engineering and the UCSB Office of Research, for research
in parallel computing.

Arvind Krishnamurthy provided additional help with his port of
SPLIT-C to the Cray Research T3D [3]. The Jet Propulsion Lab/Caltech
256-node Cray T3D Supercomputer used in this investigation was pro-
vided by funding from the NASA Offices of Mission to Planet Earth,
Aeronautics, and Space Science. We also acknowledge William Carl-
son and Jesse Draper from the Center for Computing Science (formerly
Supercomputing Research Center) for writing the parallel compiler AC
(version 2.6) [17] on which the T3D port of SPLIT-C has been based.

This work also utilized the CM-5 at National Center for Super-
computing Applications, University of Illinois at Urbana-Champaign,

under grant number ASC960008N.

28

We also thank Jeffrey Hollingsworth from UMCP’s Computer Sci-
ence Department for his suggestions and encouragement.

We would like to acknowledge the use of the UMIACS 16-node
IBM SP-2-TN2, which was provided by an IBM Shared University
Research award and an NSF Academic Research Infrastructure Grant

No. CDA9401151.

Please see http://www.umiacs.umd.edu/research/EXPAR for ad-
ditional performance information. In addition, all the code used in this
paper is freely available for interested parties from our anonymous ftp
site, ftp://ftp.umiacs.umd.edu/pub/EXPAR. We encourage other re-

searchers to compare with our results for similar inputs.

29

™

on the IBM SP-2

Performance of h-Relation Personalized Communication

on the TMC CMS

Performance of h-Relation Personalized Communication

A Additional Performance Results

g e c e
gz s % £
a = /./////.///An:
8 = H
i 2 =
H g H
H g R e &
: :
H H
g o s i
g s &N b -
M c 1 « g
H g = . 83
8) = SRE T —— [,
P € o
- ¢) s 8 «
G 2 H
¥ s 5 % R &
< g a5
- M <
g E ¢ 2 e 2
5 2 s
F 5 -
£ e 2 < e
g = B =25 ¢ §
£ 5 o g3
gy g H 3 — S—————— " e
¥ < e £ =
5 ° N £
s 9
M g
z H] H
M 8 R R R
H £ - e
M K ¥ €
= 5 - e L
H o =
@ g
(s) owny (s) owny
¢ | mS\E a
ST T— -
- o e « = = e gl
NS -
Z e g «
M—— 1 k) - S — b
oo 2 < ° H
& £ 00
EEmEmEE m - s
e o 5 .
- % =3 SN &
SSSSSS - 1]
€% 8
S Smem— N =
- f o g 5 - NNNSNSNNNNNNY &
T - ! B o -
EL2 g
SSSHENCEE @) 3) o
S s g o R & €
5 o = g a3 ~
o Se—— c 2 -
- H S 2 - R -
e M 5 £
NSSSKENEE] T ° g
g9 5 T o S S
S £
] ° . SN =
b o
R = g %
- M g SRS © o
SR £ [¢
= M S [
m— c SN\ £ <
sl &
M SN &
T p < Iy T p z
(s) owny (s) oy

th respect to ma-

1

mon w

Total Number of Elements

Cray Research T3D
1cat

d commun

30

1Z¢e

Meiko CS-2
ize

Total Number of Elements

Performance of personal

chine and problem s

6

Figure

B Deterministic Routing Algorithm

The following is run on processor i:

Algorithm 1 Deterministic Routing Algorithm

Shared Memory Model Algorithm for routing an h-relation.
Input:
{4 } is my processor number;
{ p } is the total number of processors, labelled from 0 to p — 1;
{ A} is the 7 X p input array of elements (data,i);
{ B } is the h x p output array;
{ T } is the p x p array used for holding tags when placing elements;
{C }isan (% +p?+ p) x p auxiliary array of elements (data,);
{D }isan (% +p? + p) X p auxiliary array of elements (data,1);
{ E } is an (h + p?) X p auxiliary array of elements (data, i);
{ F }is an (h + p?) x p auxiliary array of elements (data, i);
begin
1. Set blkszl = 5 + 5 + 1.
2. For k=0top—1do:
2.1 Set C[i][k * blksz1] = 0.
2.2 Set T[i][k] = i + k mod p.
3. Fork:Oto%—ldo:
3.1 Set [= (A[7][k]) — address.
3.2 Set d = Ti][l]-
3.3 Increment C[i][d * blkszl] = m.
3.4 Set C[i|[d % blksz1 + m] = A[i][k].
3.5 Set T[i][l] = T[¢][!]] + 1 mod p.
4. D = transpose (C).
. Set blksz2 = 2 4+ L.
6. For k=0 to p—1do:
6.1 Set E[i|[k x blksz2] = 0.
7. For k=0top—1do:
7.1 For [=1 to D[i][k * blksz1] do:
7.1.1 Set d = (D|i][k = blkszl + []) — address.
7.1.2 Increment E[i][d * blksz2] = m.
7.1.3 Set E[i][d * blksz2 + m] = D[i][k * blkszl + {].
8. F = transpose(F)

ot

31

9. Set z =0.
10. For k=0 to p—1 do:
10.1 For [=1 to F'[i][k * blksz2] do:
10.1.1 Set Bji][z] = Fi][k * blksz2 + [].
10.1.2 Increment z.
end

32

C Counting Sort Algorithm

Algorithm 2 Counting Sort Algorithm

Shared Memory Model Algorithm to sort n integer keys in the range
[0,R —1].

Input:
{4 } is my processor number;
{ p } is the total number of processors, labelled from 0 to p — 1;
{ Key } is the 7 Xp input array of integer keys in the range [0, R—1];
{ Addr } is the x p array which is used for destination label of
keys;
{ Indezx } is the R X p array which is used for counting local keys;
{ ScanTran } is the (% X p) x p array which holds the transpose
of Index;
{ IntLeaveScan } is the (2;,—;2 X p) X p array which will be inverse
transposed to Scans;
{ Scans } is the 2R x p array which is decomposed into MyScan
and Total;
{ MyScan } is the R X p array which is used for holding the scan
of Index;
{ Total } is the R x p array which is used for holding the total count
of keys;
{ Offset } is the 1 x p array which is used for holding the current
offset of rank;
begin

1. For £k =0to R—1do:

1.1 Set Indez[i][k] = 0.
2. Fork:OtO%—ldoz

2.1 Increment Indez[i] [Key[i][k]].
3. ScanTran = transpose(Index).
4. For j =0 to & —1 do:

4.1 For k=1 to p—1 do:

4.1.1 Set ScanTranli]([k][j]) = ScanTran[i]([k — 1][]) +
ScanTran[i|([k][7])-

33

/* Compose IntLeaveScan by interleaving scans in ScanTran
and totals in IntLeaveScan[p-1][x] */
5. For j =0 top—1 do:
5.1 ForkzOto%—ldo:
5.1.1 Set IntLeaveScanli|([j][2k]) = ScanTran[i|([j][k]).
5.1.2 Set IntLeaveScan[i|([j][2k+1]) = ScanTran[i]([p—
1][k]).
6. Scans = (inverse) transpose(IntLeaveScans).
7. For k=0to R—1 do: /* Decompose Scans */
7.1 Set MyScanli][k] = Scansli][2k].
7.2 Set Total[i][k] = Scans[i][2k + 1].
8. Set Offset[i] = 0.
9. For k =0to R—1 do:
9.1 Set Index[i|[k] = MyScan[i][k] + Offset[s].
9.2 Set Offset[i] = Offset[i] + Total[i][k].
10. Fork::OtO%—ldo:
10.1 Set Addr[i][k] = Index[i] [Key[i][k]].
10.2 Increment Index[i] [K ey[z’][k?.

11. Routing of h-Relation (h = %) of (Key, (proc: [%J , position: Addr mod p)>

end

34

References

1]

[2]

B. Abali, F. Ozgiiner, and A. Bataineh. Balanced Parallel Sort
on Hypercube Multiprocessors. IEEE Transactions on Parallel

and Distributed Systems, 4(5):572-581, 1993.

A. Alexandrov, M. Ionescu, K. Schauser, and C. Scheiman.
LogGP: Incorporating Long Messages into the LogP Model - One
step closer towards a realistic model for parallel computation. In
7th Annual ACM Symposium on Parallel Algorithms and Archi-
tectures, pages 95-105, Santa Barbara, CA, July 1995.

R.H. Arpaci, D.E. Culler, A. Krishnamurthy, S.G. Steinberg, and
K. Yelick. Empirical Evaluation of the CRAY-T3D: A Com-
piler Perspective. In Proceedings of the 22nd Annual Inter-
national Symposium on Computer Architecture, pages 320-331,

Santa Margherita Ligure, Italy, June 1995. ACM Press.

D. Bader. Randomized and Deterministic Routing Algorithms
for h-Relations. ENEE 648X Class Report, April 1, 1994.

D.A. Bader. On the Design and Analysis of Practical Parallel Al-
gorithms for Combinatorial Problems with Applications to Image
Processing. PhD thesis, University of Maryland, College Park,
Department of Electrical Engineering, April 1996.

D.A. Bader and J. JiaJa. Parallel Algorithms for Image His-
togramming and Connected Components with an Experimental
Study. Technical Report CS-TR-3384 and UMIACS-TR-94-133,
UMIACS and Electrical Engineering, University of Maryland,
College Park, MD, December 1994. In Journal of Parallel and
Distributed Computing, 35(2):173-190, 1996.

35

[7]

(8]

[10]

[11]

[12]

D.A. Bader and J. JiaJi. Parallel Algorithms for Image His-
togramming and Connected Components with an Experimental
Study. In Fifth ACM SIGPLAN Symposium of Principles and
Practice of Parallel Programming, pages 123-133, Santa Barbara,
CA, July 1995.

D.A. Bader and J. JaJa. Practical Parallel Algorithms for Dy-
namic Data Redistribution, Median Finding, and Selection. Tech-
nical Report CS-TR-3494 and UMIACS-TR-95-74, UMIACS and
Electrical Engineering, University of Maryland, College Park,
MD, July 1995.

D.A. Bader and J. JaJa. Practical Parallel Algorithms for Dy-
namic Data Redistribution, Median Finding, and Selection. In
Proceedings of the 10th International Parallel Processing Sympo-
sium, pages 292-301, Honolulu, HI, April 1996.

D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter,
L. Dagum, R. Fatoohi, S. Fineberg, P. Frederickson, T. Lasinski,
R. Schreiber, H. Simon, V. Venkatakrishnan, and S. Weeratunga.
The NAS Parallel Benchmarks. Technical Report RNR-94-007,
Numerical Aerodynamic Simulation Facility, NASA Ames Re-
search Center, Moffett Field, CA, March 1994.

V. Bala, J. Bruck, R. Cypher, P. Elustondo, A. Ho, C.-T. Ho,
S. Kipnis, and M. Snir. CCL: A Portable and Tunable Col-
lective Communication Library for Scalable Parallel Computers.
IEEE Transactions on Parallel and Distributed Systems, 6:154—
164, 1995.

D.P. Bertsekas, C. Ozveren, G.D. Stamoulis, P. Tseng, and J.N.

Tsitsiklis. Optimal Communication Algorithms for Hypercubes.

36

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Journal of Parallel and Distributed Computing, 11:263-275, 1991.

G.E. Blelloch, C.E. Leiserson, B.M. Maggs, C.G. Plaxton, S.J.
Smith, and M. Zagha. A Comparison of Sorting Algorithms
for the Connection Machine CM-2. In Proceedings of the ACM
Symposium on Parallel Algorithms and Architectures, pages 3—-16,
July 1991.

S.H. Bokhari. Complete Exchange on the iPSC-860. ICASE Re-
port No. 91-4, ICASE, NASA Langley Research Center, Hamp-
ton, VA, January 1991.

S.H. Bokhari. Multiphase Complete Exchange on a Circuit
Switched Hypercube. In Proceedings of the 1991 International
Conference on Parallel Processing, pages 1-525 — 1-529, August
1991. Also appeared as NASA ICASE Report No. 91-5.

S.H. Bokhari and H. Berryman. Complete Exchange on a Circuit
Switched Mesh. 1In Proceedings of Scalable High Performance
Computing Conference, pages 300-306, Williamsburg, VA, April
1992.

W.W. Carlson and J.M. Draper. AC for the T3D. Technical Re-
port SRC-TR-95-141, Supercomputing Research Center, Bowie,
MD, February 1995.

Cray Research, Inc. SHMEM Technical Note for C, October 1994.

Revision 2.3.

D.E. Culler, A. Dusseau, S.C. Goldstein, A. Krishnamurthy,
S. Lumetta, S. Luna, T. von Eicken, and K. Yelick. Introduc-
tion to Split-C. Computer Science Division - EECS, University
of California, Berkeley, version 1.0 edition, March 6, 1994.

37

[20]

[21]

[22]

[23]

[24]

[25]

[26]

D.E. Culler, R.M. Karp, D.A. Patterson, A. Sahay, K.E.
Schauser, E. Santos, R. Subramonian, and T. von Eicken. LogP:
Towards a Realistic Model of Parallel Computation. In Fourth
ACM SIGPLAN Symposium on Principles and Practice of Par-
allel Programming, May 1993.

V.V. Dimakopoulos and N.J. Dimopoulos. Optimal Total Ex-
change in Linear Arrays and Rings. In Proceedings of the 199/
International Symposium on Parallel Architectures, Algorithms,

and Networks, pages 230-237, Kanazawa, Japan, December 1994.

A.C. Dusseau. Modeling Parallel Sorts with LogP on the CM-
5. Technical Report UCB//CSD-94-829, Computer Science Di-

vision, University of California, Berkeley, 1994.

N. Folwell, S. Guha, and I. Suzuki. A Practical Algorithm for
Integer Sorting on a Mesh-Connected Computer. In Proceedings
of the High Performance Computing Symposium, pages 281-291,
Montreal, Canada, July 1995. Preliminary Version.

A.V. Gerbessiotis and L.G. Valiant. Direct Bulk-Synchronous
Parallel Algorithms. Journal of Parallel and Distributed Com-
puting, 22(2):251-267, 1994.

S. Heller. Congestion-Free Routing on the CM-5 Data Router.
In Proceedings of the First International Workshop on Parallel

Computer Routing and Communication, pages 176-184, Seattle,
WA, May 1994. Springer-Verlag.

S. Hinrichs, C. Kosak, D.R. O’Hallaron, T.M. Strickler, and
R. Take. An architecture for optimal all-to-all personalized com-
munication. Technical Report CMU-CS-94-140, School of Com-
puter Science, Carnegie Mellon University, September 1994.

38

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

T. Horie and K. Hayashi. All-to-All Personalized Communication
on a Wrap-around Mesh. In Proceedings of the Second Fujitsu-
ANU CAP Workshop, Canberra, Austrailia, November 1991. 10
pP-

J. JaJa and K.W. Ryu. The Block Distributed Memory Model.
Technical Report CS-TR-3207, Computer Science Department,
University of Maryland, College Park, January 1994. To appear
in IEEE Transactions on Parallel and Distributed Systems.

J.F. JAJ4 and K.W. Ryu. The Block Distributed Memory
Model for Shared Memory Multiprocessors. In Proceedings of the

8th International Parallel Processing Symposium, pages 752-756,
Cancin, Mexico, April 1994. (Extended Abstract).

S.L. Johnsson and C.-T. Ho. Optimal Broadcasting and Per-
sonalized Communication in Hypercubes. IEEE Transactions on

Computers, 38(9):1249-1268, 1989.

M. Kaufmann, J.F. Sibeyn, and T. Suel. Derandomizing Algo-
rithms for Routing and Sorting on Meshes. In Proceedings of the
5th Symposium on Discrete Algorithms, pages 669-679. ACM-
STAM, 1994.

D.E. Knuth. The Art of Computer Programming: Sorting and
Searching, volume 3. Addison-Wesley Publishing Company,
Reading, MA, 1973.

D. Krizanc. Integer Sorting on a Mesh-Connected Array of Pro-

cessors. Information Processing Letters, 47(6):283-289, 1993.

Y.-D. Lyuu and E. Schenfeld. Total Exchange on a Reconfig-
urable Parallel Architecture. In Proceedings of the Fifth IEEE

39

[35]

[36]

[37]

[38]

[39]

[40]

Symposium on Parallel and Distributed Processing, pages 2-10,

Dallas, TX, December 1993.

Message Passing Interface Forum. MPI: A Message-Passing In-
terface Standard. Technical report, University of Tennessee,

Knoxville, TN, June 1995. Version 1.1.

S.R. Ohring and S.K. Das. Efficient Communication in the
Foldned Petersen Interconnection Networks. In Proceedings of the
Sizth International Parallel Architectures and Languages Furope
Conference, pages 25-36, Athens, Greece, July 1994. Springer-
Verlag.

S. Ranka, R.V. Shankar, and K.A. Alsabti. Many-to-many Per-
sonalized Communication with Bounded Traffic. In The Fifth
Symposium on the Frontiers of Massively Parallel Computation,

pages 2027, McLean, VA, February 1995.

S. Rao, T. Suel, T. Tsantilas, and M. Goudreau. Efficient Com-
munication Using Total-Exchange. In Proceedings of the 9th In-

ternational Parallel Processing Symposium, pages 544-550, Santa
Barbara, CA, April 1995.

T. Schmiermund and S.R. Seidel. A Communication Model for
the Intel iPSC/2. Technical Report Technical Report CS-TR
9002, Dept. of Computer Science, Michigan Tech. Univ., April
1990.

D.S. Scott. Efficient All-to-All Communication Patterns in Hy-
percube and Mesh Topologies. In Proceedings of the 6th Dis-

tributed Memory Computing Conference, pages 398-403, Port-
land, OR, April 1991.

40

[41]

[42]

[43]

[44]

[45]

[46]

[47]

T. Suel. Routing and Sorting on Meshes with Row and Col-
umn Buses. Technical Report UTA//CS-TR-94-09, Department
of Computer Sciences, University of Texas at Austin, October

1994.

R. Take. A Routing Method for All-to-All Burst on Hypercube
Networks. In Proceedings of the 35th National Conference of In-
formation Processing Society of Japan, pages 151-152, 1987. In

Japanese. Translation by personal communication with R. Take.

R. Thakur and A. Choudhary. All-to-All Communication on
Meshes with Wormhole Routing. In Proceedings of the 8th Inter-

national Parallel Processing Symposium, pages 561-565, Cancun,

Mexico, April 1994.

R. Thakur, A. Choudhary, and G. Fox. Complete Exchange on a
Wormhole Routed Mesh. Report SCCS-505, Northeast Parallel

Architectures Center, Syracuse University, Syracuse, NY, July

1993.

R. Thakur, R. Ponnusamy, A. Choudhary, and G. Fox. Complete
Exchange on the CM-5 and Touchstone Delta. Journal of Super-
computing, 8:305-328, 1995. (An earlier version of this paper was
presented at Supercomputing '92.).

L.G. Valiant. A Bridging Model for Parallel Computation. Com-
munications of the ACM, 33(8):103-111, 1990.

J.-C. Wang, T.-H. Lin, and S. Ranka. Distributed Scheduling of
Unstructured Collective Communication on the CM-5. Techni-
cal Report CRPC-TRY94502, Syracuse University, Syracuse, NY,
1994.

41

[48] S.C. Woo, M. Ohara, E. Torrie, J.P. Singh, and A. Gupta.
The SPLASH-2 Programs: Characterization and Methodological
Considerations. In Proceedings of the 22nd Annual International

Symposium on Computer Architecture, pages 24-36, June 1995.

42

