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SNR li 

TABLE I 
ESTIMATED VALUES OF P USING (7)49) FOR 

VARIOUS SNR AND THRESHOLD T ,  TRUE P = 4 

0.4 

0.8 

1.2 

1.6 

1.8 1.6 2.8 2.4 

2.8 3.0 3.2 2.2 

3.4 3.4 3.2 2.0 

3.6 3.4 3.0 1.8 

11 T I3dB l0dB 20dB 30dB 1 1  

0.4 

0.8 

1.2 

1.6 

2.0 1.4 3.4 1.6 

3.6 3.8 4.6 1.2 

5.2 4.8 4.2 1.2 

5.6 5.0 3.8 1.2 

TABLE I1 

VARIOUS SNR AND THRESHOLD T ,  TRUE P = S 
ESTIMATED VALUES OF 1’ USING (7)-(9) FOR 

SNR n 
1 1  T I3dB 10dB 20dB 30dB 1 1  

extracting a representative noise sample n, which is not dominated 
by image components. There is also a bias in the estimates, but for 
this image, a threshold level between 1.2 and 1.6 provides the best 
performance. Considering the implications of Fig. 3, this bias is not 
serious for 11 larger than about 3. 

Another important consideration is whether improvement is possi- 
ble when the noise distribution is not a member of the gpG family. 
The following example illustrates that flexibility provided by the 
shape parameter enables the gpG model to approximate the noise 
distribution. In this case, the noise was distributed 1‘ (Chi squared) 
with three degrees of freedom, which is neither gpG nor symmetric. 
Noise data was scaled such that the resulting corrupted image had 
a 15-dB SNR. The estimated value for 11 using the method outlined 
in Section 111-A is 1.2. Fig. 4(a) shows the blurred image with 1’ 
noise, whereas Fig. 4(b) shows the restored image. Fig. 5 presents 
a comparison of the error curves for the adaptive restoration and 
least squares. Note that the minimum error point for 11 = 1.2 is 
significantly below that of 11 = 2. The encouraging observation here 
is that even in the presence of noise clearly not well modeled by a 
gpG distribution, the adaptive approach offers an improvement over 
methods that implicitly assume a strict Gaussian model. 

i 

I 
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Scalable Data Parallel Algorithms for Texture 
Synthesis Using Gibbs Random Fields 

David A. Bader, Joseph Jug, and Rama Chellappa 

Abstract-This correspondence introduces scalable data parallel algo- 
rithms for image processing. Focusing on Gibbs and Markov random 
field model representation for textures, we present parallel algorithms 
for texture synthesis, compression, and maximum likelihood parameter 
estimation, currently implemented on Thinking Machines CM-2 and CM- 
5. Use of fine-grained, data parallel processing techniques yields real-time 
algorithms for texture synthesis and compression that are substantially 
faster than the previously known sequential implementations. Although 
current implementations are on Connection Machines, the methodology 
presented here enables machine-independent scalable algorithms for a 
number of problems in image processing and analysis. 

I. INTRODUCTION 

Random fields have been successfully used to sample and synthe- 
size textured images [4]-[7], [9]. Texture analysis has applications 
in image segmentation and classification, biomedical image analysis, 
and automatic detection of surface defects. Of particular interest are 
the models that specify the statistical dependence of the gray level 
at a pixel on those of its neighborhood. There are several well- 
known algorithms describing the sampling process for generating 
synthetic textured images and algorithms that yield an estimate of the 
parameters of the assumed random process given a textured image. 
Impressive results related to real-world imagery have appeared in 
the literature [3] ,  [5 ] - [8 ] .  However, all these algorithms are quite 
computationally demanding because they typically require on the 
order of Gv2 arithmetic operations per iteration for an image of size 
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Fig. 1. Gaussian MRF sampler algorithm. 

/ I  x with G gray levels. The implementations known to the authors 
are slow and operate on images of size 128 x 128 or smaller. 

In this correspondence, we develop scalable data parallel algo- 
rithms for implementing the most important texture sampling and 
synthesis algorithms. The data parallel model is an architecture- 
independent programming model that allows an arbitrary number of 
virtual processors to operate on large amounts of data in  parallel. All 
the algorithms described in this paper have been implemented and 
thoroughly tested on a Connection Machine CM-2 and a Connection 
Machine CM-5. 

Section I1 develops parallel algorithms for texture synthesis using 
Gibbs and Gaussian Markov random fields (GMRF's). Parameter 
estimation for Gaussian Markov random field textures (see Fig. I ) ,  
using least squares (see Fig. 2). as well as maximum likelihood 
techniques (see Fig. 3) are given in Section 111. Conclusions are given 
in Section IV. 

11. TEXTURE SYNTHESIS 

A.  A Parallel Gibbs Sampler 

mass function of the image as follows: 
A discrete Gibbs random field (GRF) is specified by a probability 

( , P I ' ( >  1 
Pr (S = . r )  = ~ ( 1 )  

where C-(.r) is the energy function, and Z = C - ( x ) ,  over all G" 
images; G being the number of gray levels, and the image is of size 
fi x fi. Except in very special circumstances, it is not feasible to 
compute Z .  A relaxation-type algorithm described in [6] simulates 
a Markov chain through an iterative procedure that readjusts the 
gray levels at pixel locations during each iteration. This algorithm 
sequentially initializes the value of each pixel using a uniform 
distribution. Then a single pixel location is selected at random, and 
using the conditional distribution that describes the Markov chain, 
the new gray level at that location is selected, dependent only upon 
the gray levels of the pixels in its local neighborhood. The sequential 
algorithm terminates after a given number of iterations. 

The sequential algorithm to generate a Gibbs random field de- 
scribed in [6] and [7] is used as a basis for our parallel algorithm. 
For all the algorithms given in this correspondence, we use a 
symmetric neighborhood S,%, which is half the size of the standard 
neighborhood model AY. This implies that if the vector 0. J )  E .\, 
then(-( .  - J )  E AY,butonlyoneof{[l. J ) .  ( - t .  - j )}is in ,V, .Each 
element of array (-1 is taken to represent the parameter associated with 

Z 

Fig. 2. Least squares estimator algorithm. 

its corresponding element in :Ys. We use the notation y, to represent 
the gray level of the image at pixel location U .  

Our Gibbs random field is generated using a simulated annealing 
type process. For an image with G gray levels, the probability 
I'r (.I- = kI ntighliors) is binomial with parameter 9 ( T )  = &, 
and number of trials G - 1. The array {T} is given in the following 
equation for a first-order model: 

and is a weighted sum of neighboring pixels at each pixel location. 
Additional examples of {T} for higher order models may be found 
in [6]. 

This algorithm is ideal for parallelization. The calculation of {T} 
requires uniform communication between local processing elements, 
and all other operations needed in the algorithm are data independent, 
uniform at each pixel location, scalable, and simple. 

An example of a hinary synthetic texture generated by the Gibbs 
sampler is given in Fig. 4. 

Table I shows the timings of a binary Gibbs sampler for model 
orders 1, 2, and 4, on the CM-5. More extensive tables for both the 
CM-2 and CM-5 can be found in [l]. 
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Fig. 4. Isotropic inhibition texture using Gibbs sampler (Texture 9b from 
161). 

TABLE I 

TIME IN SECONDS PER ITERATION ON A CM-5 WITH VECTOR UNITS) 
GIBBS SAMPLER TIMINC~S FOR A BINARY (G = 2 )  IMAGE (EXECUTION 

~ ~ ~ = , ~ - ~ -  
16/vu ( M ~ 1 3 2 / v u  CM 5 l6/v.o CM 5 1 3 2 / w  CM - 7 5 16/vo - 7 1  CM 5 32/bu CM J 

- ~~ 

B. Gaussian Markov Random Field Sampler 

In this section, we consider the class of 2-D noncausal models 
known as GMRF models, which are described in [3], [ 5 ] ,  and [9]. 
Pixel gray levels have joint Gaussian distributions and correlations 
controlled by a number of parameters representing the statistical 
dependence of a pixel value on the pixel values in a symmetric 
neighborhood. There are two basic schemes for generating a GMRF 
image model, both of which are discussed in [3]. The iterative 
GMRF sampler is similar to the Gibbs sampler, but instead of the 
binomial distribution, we use the continuous Gaussian distribution 
as the probability function. An efficient parallel implementation is 
straightforward and similar to that of the Gibbs sampler. 

The previous section outlined an algorithm for sampling GMRF 
textured images using an iterative method. Unfortunately, this algo- 
rithm may have to perform hundreds or even thousands of iterations 
before a stable texture is realized. Next, we present a scheme that 
makes use of 2-D Fourier transforms and does not need to iterate. The 
direct GMRF sampler algorithm is realized from [3] as follows. We 
use the following scheme to reconstruct a texture from its parameters 
0 and a neighborhood .IT9: 

(3) 

where y is the resulting -\IL array of the texture image, and 

*l .r, = f, q. 
I ( ,  = (1  - m' @,). VIT E I I .  

(4) 

The sampling process is as follows. We begin with v, a Gaussian 
zero-mean noise vector with identity covariance matrix. We generate 
its Fourier series, via the fast Fourier transform, using f m ,  the Fourier 

vector defined below, and finally apply (3). 

f,, = col 11, A,.  ~ f t , .  . . . , A ; ~ - ' ~ , I ,  is an AI' vector, ( 5 )  
t ,  =Col[1, A,. A:. ' . . ,  A:'~ ' ] ,  is an-11-vector. 

and A, = exp (a%). (6) 

111. PARAMETER ESTIMATION FOR GMRF TEXTURES 

Given a real textured image, we wish to determine the parameters 
of a GMRF model that could be used to reconstruct the original 
texture through the samplers given in the previous section. 

This section develops parallel algorithms for estimating the pa- 
rameters of a GMRF texture. The methods of least squares (LSE) 
and of maximum likelihood (MLE), both described in [3], are used. 
We present efficient parallel algorithms to implement both methods. 
The MLE performs better than the LSE. This can be seen visually 
by comparing the textures synthesized from the LSE and MSE 
parameters, or by noting that the asymptotic variance of the MLE 
is lower than the LSE [2], [lo]. 

A. Least Squares Estimate of Parameters 

vations of the GMRF image { y, } obey the model 
The least squares estimate detailed in [3] assumes that the obser- 

I/, = + w , - 7 ]  + ( U .  VIT E (2 (7)  
I € % ?  

where { F ~ }  IS a zero-mean correlated noise sequence with variance 
I /  and correlation with the following structure: 

E ( e , e , )  = --OU-,u. if ( IT - r )  E -\-. 

v, if IT = r ,  

0, otherwise. (8) 

Then, for g, = Col [yn+, I + y D - T / ,  r' E -V5], the LSE are 

(9) 

where ( 2  is the complete set of i1P pixels, and toroidal wrap-around 
is assumed. 

B. Maximum Likelihood Estimate of Parameters 

We introduce the following approach as an improved method for 
estimating GMRF parameters of textured images. The method of 
maximum likelihood gives a better estimate of the texture parameters 
since the asymptotic variance of the MLE is lower than that of 
the LSE. We also show a much faster algorithm for optimizing 
the joint probability density function, which is an extension of the 
Newton-Raphson method and is also highly parallelizable. 

Assuming a toroidal lattice representation for the image { y, } and 
Gaussian structure for noise sequence { e , } ,  the joint probability 
density function is the following: 

P(YlC), U )  = 
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Fig. 5. Tree bark texture: (clockwise from top left) original image, re- 
constructed from the LSE, MLE, and Compressed image. A model whose 
parameters are listed in Table I1 was used. 

In (lo), C(  T ,  ) is the sample correlation estimate at lag T ,  . As de- 
scribed in [2] and [ 3 ] ,  the log-likelihood function can be maximized: 
(note that F ( @ ,  v )  = log p(y1 0. U ) )  

For a square image, aTr is given as follows: 

This nonlinear function F is maximized by using an extension 
of the Newton-Raphson method. This new method first generates a 
search direction ilA by solving the system 

Note that this method works well when C ” F ( B n )  is a symmetric, 
positive-definite Hessian matrix. We then maximize the step in the 
search direction, yielding an approximation to Ak that attains the local 
maximum of F({-)n + Xi))  and also satisfies the constraints that each 
of the M 2  values in the logarithm term for F is positive. Finally, an 
optimalir); test is performed. We set 8 ~ + 1  = 0~ + XI), and if O ~ + I  
is sufficiently close to e ~ ,  the procedure terminates. We give the first 
and second derivatives of F with respect to (?In. and v in [l]. 

For a rapid convergence of the Newton-Raphson method, it must 
be initialized with a good estimate of parameters close to the global 
maximum. We use the least squares estimate given in Section 111-A 
as Oa, the starting value of the parameters. 

TABLE I1 
0 PARAMETERS FOR TREE BARK TEXTURE 

U ~ ( e )  -26614734 

Texture Synthesis Performance 
for N x N Images 

on a CM-5 with P processors 

~~ 

MLE 
0.015561 

-0 006186 
-0.003748 
0.036778 
0.040860 
0.067912 
0.055445 

65 45 
-264245.13 

-~ 

~~ 

~- 

12 , 
Least Squares Estimate 

Maximum Likelihood Estimate 
Max Quantization 
Reconstruction U 

0 

.. 

256 I 256 I 5 1 2  I 5 1 2  I 256 I 256 I 5 1 2  I 512 I N 
Fourth I Fourth I Fourth ] Fourth I Higher I Higher I Higher I Higher UOrde 

I mare Characteristics 

Fig. 6. Timings for parallel image processing techniques 

In Fig. 5 ,  we show the synthesis using least squares and maximum 
likelihood estimates for tree bark obtained from standard textures 
library. Table I1 shows the respective parameters for both the LSE 
and MLE and give their log-likelihood function values. This example 
shows that the maximum likelihood estimate improves the param- 
eterization. In addition, CM-5 timings for these estimates varying 
machine size, image size, and neighborhood models can be found in 
Fig. 6 for both fourth and higher order models on this selection of 
real-world textured images. The value plotted is the mean time over 
13 diverse images, and errors bars give the standard deviation. More 
explicit tables, as well as CM-2 timings, for these estimates can be 
found in [ I ] .  

IV. CONCLUSIONS 

We have presented efficient data parallel algorithms for texture 
analysis and synthesis based on Gibbs or Markov random field 
models. A complete software package running on the Connection 
Machine model CM-2 and the Connection Machine model CM-5 
implementing these algorithms is available for distribution to in- 
terested parties. Please see http:Nwww.umiacs.umd.eduTdbader for 
additional information. The experimental data strongly support the 
analysis concerning rhe scalability of our algorithms. The same type 
of algorithms can be used to handle other image processing algorithms 
such as image estimation [8], [9], texture segmentation [ 5 ] ,  and 
integration of early vision modules. We are currently examining 
several of these extensions. 

http:Nwww.umiacs.umd.eduTdbader
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The parameters for the 256 x 256 image of tree bark texture in  
Fig. 5 are given in Table 11. 
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Linear Filtering of Images Based on Properties of Vision 

V. Ralph Algazi, Gary E. Ford, and Hong Chen 

Abstract-The design of linear image filters based on properties of 
human visual perception has been shown to require the minimization of 
criterion functions in both the spatial and frequency domains. In this 
correspondence, we extend this approach to continuous filters of infinite 
support. For lowpass filters, this leads to the concept of an ideal lowpass 
image filter that provides a response that is superior perceptually to that 
of the classical ideal lowpass filter. 

I. INTRODUCTION 

HE use of hard cutoff (ideal) lowpass filters in the suppression of T additive image noise is known to produce ripples in the response 
to sharp edges. For high contrast edges, human visual perception 
fairly simply determines acceptable filter behavior. Ripples in the 
filter response are visually masked by the edge, so that the contrast 
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sensitivity of the visual system decreases at sharp transitions in image 
intensity and increases somewhat exponentially as a function of the 
spatial distance from the transition. 

Algorithmic procedures using properties of human vision have been 
described for over 20 years [l]. The development of adaptive methods 
of image enhancement and restoration, based on the use of a masking 
function, measure spatial detail to determine visual masking [2], [3]. 
In active regions of the image, visual masking is high, relative noise 
visibility is low, and the filter applied is allowed to pass more noise 
until the subjective visibility is equal to that in flat areas. 

Whether the filter is adaptive or not, the design of the linear filter to 
be applied is a critical issue. Hentea and Algazi [4] have demonstrated 
that the first perceptible image distortions due to linear filtering occur 
at the major edges and thus, worst case design for visual appearance 
should be based on edge response. They developed a filter design 
approach based on the minimization of a weighted sum of squared- 
error criterion functions in both the spatial and frequency domains. 
In the spatial domain, the weighting is by a visibility function, 
representing the relative visibility of spatial details as a monotonically 
increasing function of the distance from an edge. This visibility 
function, determined experimentally from the visibility of a short 
line positioned parallel to an edge, was also found experimentally to 
predict satisfactorily the visibility of ripples due to linear filters [4]. 

In the following, we extend the work of Hentea and Algazi by 
considering the design and properties of one-dimensional continuous 
filters of infinite support (two-dimensional filters are generated by 1 D 
to 2 D transformations). We obtain a new formal result on the lowpass 
filter of infinite support that is optimal for images. It establishes the 
limiting performance that digital filters of finite complexity can only 
approximate. 

11. DESIGN OF ONE-DIMENSIONAL FILTERS FOR IMAGES 

The basic tradeoff in the design approach of Algazi and Hentea 
[4] is maintaining image quality while reducing unwanted artifacts 
or noise. The image quality is measured by spatial domain criterion 
function for the visibility of ripples in the vicinity of edges 

x 

I ]  =s, w: ( . r . ) [ ; r ( . r . )  - I / ( . r ) ] ’ d . r  ( 1 )  

where I / (  . r )  is a unit step input producing the filter response f i ( . r )  = 
U ( . , . )  * / i ( . r ) ,  where h ( , r )  is the point spread function of the filter, 
* denotes convolution and I I ’ I  ( . r )  is a spatial weighting function, 
chosen to be the visibility function 

w , ( , r )  = 1 - ( I i l . i .  (2) 

The frequency domain criterion function for the reduction of un- 
wanted artifacts and noise is 

x 

n:,” ( f ) l H ( f )  - H,,(f)12 df (3) 

where Hrj(  f )  is the desired filter frequency response and D - 2  (f) is the 
frequency-domain weighting function. Hentea and Algazi minimized 
I I  under a constraint on 12, but we now minimize the equivalent 
criterion J ( n )  = t r I l  + (1  - c i ) I z  where (1 controls the relative 
weights of the two criteria, with 0 5 n 5 1. 

To develop the optimality condition, (1) is expressed in the 
frequency domain using Parseval’s relation, the transform of a zero- 
mean step is used, and calculus of variations is applied to the criterion 

I2 = .L 
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